Advertisement

Journal of High Energy Physics

, 2019:233 | Cite as

Quantum tasks in holography

  • Alex MayEmail author
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We consider an operational restatement of the holographic principle, which we call the principle of asymptotic quantum tasks. Asymptotic quantum tasks are quantum information processing tasks with inputs given and outputs required on points at the boundary of a spacetime. The principle of asymptotic quantum tasks states that tasks which are possible using the bulk dynamics should coincide with tasks that are possible using the boundary. We extract consequences of this principle for holography in the con- text of asymptotically AdS spacetimes. Among other results we find a novel connection between bulk causal structure and the phase transition in the boundary mutual infor- mation. Further, we note a connection between holography and quantum cryptography, where the problem of completing asymptotic quantum tasks has been studied earlier. We study the cryptographic and AdS/CFT approaches to completing asymptotic quantum tasks and consider the efficiency with which they replace bulk classical geometry with boundary entanglement.

Keywords

AdS-CFT Correspondence Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
  2. [2]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A.P. Kent, W.J. Munro, T.P. Spiller and R.G. Beausoleil, Tagging systems, July 11 2006, US Patent 7,075,438.Google Scholar
  6. [6]
    H. Buhrman et al., Position-based quantum cryptography: Impossibility and constructions, SIAM J. Comput. 43 (2014) 150.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Kent, W.J. Munro and T.P. Spiller, Quantum tagging: Authenticating location via quantum information and relativistic signaling constraints, Phys. Rev. A 84 (2011) 012326 [arXiv:1008.2147].ADSCrossRefGoogle Scholar
  9. [9]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Yu Kitaev, A. Shen and M.N. Vyalyi, Classical and quantum computation, Number 47, American Mathematical Soc., (2002).Google Scholar
  12. [12]
    M.M. Wilde, Quantum information theory, second edition, Cambridge University Press, (2017).Google Scholar
  13. [13]
    A. Kent, Quantum Tasks in Minkowski Space, Class. Quant. Grav. 29 (2012) 224013 [arXiv:1204.4022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Kent, A no-summoning theorem in relativistic quantum theory, Quant. Inf. Proc. 12 (2013) 1023 [arXiv:1101.4612] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Hayden and A. May, Summoning Information in Spacetime, or Where and When Can a Qubit Be?, J. Phys. A 49 (2016) 175304 [arXiv:1210.0913] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    E. Adlam and A. Kent, Quantum paradox of choice: More freedom makes summoning a quantum state harder, Phys. Rev. A 93 (2016) 062327.ADSCrossRefGoogle Scholar
  18. [18]
    A. Kent, Unconstrained Summoning for relativistic quantum information processing, Phys. Rev. A 98 (2018) 062332 [arXiv:1806.01736] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P. Hayden and A. May, Localizing and excluding quantum information; or, how to share a quantum secret in spacetime, arXiv:1806.04154.
  20. [20]
    N. Lashkari, C. Rabideau, P. Sabella-Garnier and M. Van Raamsdonk, Inviolable energy conditions from entanglement inequalities, JHEP 06 (2015) 067 [arXiv:1412.3514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M. Van Raamsdonk, Gravitational positive energy theorems from information inequalities, PTEP 2016 (2016) 12C109 [arXiv:1605.01075] [INSPIRE].
  22. [22]
    A. Kent, Unconditionally secure bit commitment by transmitting measurement outcomes, Phys. Rev. Lett. 109 (2012) 130501 [arXiv:1108.2879].ADSCrossRefGoogle Scholar
  23. [23]
    A. Kent, Unconditionally secure bit commitment with flying qudits, New J. Phys. 13 (2011) 113015 [arXiv:1101.4620].ADSCrossRefGoogle Scholar
  24. [24]
    A. Kent, Coin tossing is weaker than bit commitment, Phys. Rev. Lett. 83 (1999) 5382 [quant-ph/9810067] [INSPIRE].
  25. [25]
    J. Barrett, L. Hardy and A. Kent, No signaling and quantum key distribution, Phys. Rev. Lett. 95 (2005) 010503.ADSCrossRefGoogle Scholar
  26. [26]
    L. Vaidman, Instantaneous measurement of nonlocal variables, Phys. Rev. Lett. 90 (2003) 010402.ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].
  28. [28]
    N. Engelhardt and S. Fischetti, The Gravity Dual of Boundary Causality, Class. Quant. Grav. 33 (2016) 175004 [arXiv:1604.03944] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    V.E. Hubeny, M. Rangamani and E. Tonni, Global properties of causal wedges in asymptotically AdS spacetimes, JHEP 10 (2013) 059 [arXiv:1306.4324] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Tomamichel, S. Fehr, J. Kaniewski and S. Wehner, A monogamy-of-entanglement game with applications to device-independent quantum cryptography, New J. Phys. 15 (2013) 103002.ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Harlow, TASI Lectures on the Emergence of Bulk Physics in AdS/CFT, PoS(TASI2017)002 (2018) [arXiv:1802.01040] [INSPIRE].
  33. [33]
    X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement Wedge Reconstruction via Universal Recovery Channels, Phys. Rev. X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    S. Pirandola and C. Lupo, Ultimate precision of adaptive noise estimation, Phys. Rev. Lett. 118 (2017) 100502 [arXiv:1609.02160].ADSCrossRefGoogle Scholar
  36. [36]
    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Annales Henri Poincaré 19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    C.A. Fuchs and J. Van De Graaf, Cryptographic distinguishability measures for quantum-mechanical states, IEEE Trans. Inform. Theory 45 (1999) 1216.MathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Beigi and R. König, Simplified instantaneous non-local quantum computation with applications to position-based cryptography, New J. Phys. 13 (2011) 093036.Google Scholar
  40. [40]
    S. Ishizaka and T. Hiroshima, Asymptotic Teleportation Scheme as a Universal Programmable Quantum ProceSSOR, Phys. Rev. Lett. 101 (2008) 240501 [arXiv:0807.4568] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M.A. Nielsen and I.L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79 (1997) 321 [quant-ph/9703032] [INSPIRE].
  42. [42]
    S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, Constraining gravity using entanglement in AdS/CFT, JHEP 05 (2014) 029 [arXiv:1401.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of Gravitational Systems from Entanglement of Conformal Field Theories, Phys. Rev. Lett. 114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    S. Banerjee, A. Kaviraj and A. Sinha, Nonlinear constraints on gravity from entanglement, Class. Quant. Grav. 32 (2015) 065006 [arXiv:1405.3743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    J. Bhattacharya, V.E. Hubeny, M. Rangamani and T. Takayanagi, Entanglement density and gravitational thermodynamics, Phys. Rev. D 91 (2015) 106009 [arXiv:1412.5472] [INSPIRE].ADSGoogle Scholar
  46. [46]
    D. Neuenfeld, K. Saraswat and M. Van Raamsdonk, Positive gravitational subsystem energies from CFT cone relative entropies, JHEP 06 (2018) 050 [arXiv:1802.01585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E.C. Adlam, Relativistic quantum tasks, Ph.D. Thesis, University of Cambridge, U.K., (2017), https://doi.org/10.17863/CAM.22081.
  49. [49]
    P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Commun. Math. Phys. 246 (2004) 359.ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    O. Fawzi and R. Renner, Quantum conditional mutual information and approximate markov chains, Commun. Math. Phys. 340 (2015) 575.ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    H.-K. Lau and H.-K. Lo, Insecurity of position-based quantum-cryptography protocols against entanglement attacks, Phys. Rev. A 83 (2011) 012322.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyThe University of British ColumbiaVancouverCanada

Personalised recommendations