Advertisement

Journal of High Energy Physics

, 2019:232 | Cite as

Power-enhanced leading-logarithmic QED corrections to Bq→ μ+μ

  • Martin Beneke
  • Christoph Bobeth
  • Robert SzafronEmail author
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We provide a systematic treatment of the previously discovered power- enhanced QED corrections to the leptonic decay Bq→ μ+μ (q = d, s) in the frame- work of soft-collinear effective theory (SCET). Employing two-step matching on SCETI and SCETII, and the respective renormalization group equations, we sum the leading- logarithmic QED corrections and the mixed QED-QCD corrections to all orders in the couplings for the matrix element of the semileptonic weak effective operator Q9. We pro- pose a treatment of the B-meson decay constant and light-cone distribution amplitude in the presence of process-specific QED corrections. Finally we include ultrasoft photon radiation and provide updated values of the non-radiative and radiative branching fractions of Bq→ μ+μ decay that include the double-logarithmic QED and QCD corrections.

Keywords

Heavy Quark Physics Precision QED 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes K L → μ + μ , K + → π + ν \( \overline{v} \) and K 0 \( {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
  2. [2]
    A. Bazavov et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98 (2018) 074512 [arXiv:1712.09262] [INSPIRE].
  3. [3]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to K + → π + ν \( \overline{v} \) at next-to-next-to-leading order, JHEP 11 (2006) 002 [Erratum ibid. 11 (2012) 167] [hep-ph/0603079] [INSPIRE].
  4. [4]
    C. Bobeth et al., B s,d + in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].
  5. [5]
    A. Sirlin, Current algebra formulation of radiative corrections in gauge theories and the universality of the weak interactions, Rev. Mod. Phys. 50 (1978) 573 [Erratum ibid. 50 (1978) 905] [INSPIRE].
  6. [6]
    A. Sirlin, Large mW , mZ behavior of the O(α) corrections to semileptonic processes mediated by W , Nucl. Phys. B 196 (1982) 83 [INSPIRE].
  7. [7]
    W.J. Marciano and A. Sirlin, Radiative corrections to π(ℓ2) decays, Phys. Rev. Lett. 71 (1993) 3629 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to B s,d + , Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].
  9. [9]
    T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to B s → μ + μ , JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline{B} \) → X s+ and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].
  11. [11]
    T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline{B} \) → X s+ , Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].
  12. [12]
    LHCb collaboration, Measurement of the \( {B}_s^0 \) → μ + μ branching fraction and search for B 0 → μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].
  13. [13]
    CMS collaboration, Measurement of the \( {B}_s^0 \) → μ + μ branching fraction and search for B 0 → μ + μ with the CMS experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].
  14. [14]
    CMS and LHCb collaborations, Observation of the rare \( {B}_s^0 \) → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  15. [15]
    ATLAS collaboration, Study of the rare decays of \( {B}_s^0 \) and B 0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector, Eur. Phys. J. C 76 (2016) 513 [arXiv:1604.04263] [INSPIRE].
  16. [16]
    LHCb collaboration, Measurement of the \( {B}_s^0 \) → μ + μ branching fraction and effective lifetime and search for B 0 → μ + μ decays, Phys. Rev. Lett. 118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].
  17. [17]
    ATLAS collaboration, Study of the rare decays of \( {B}_s^0 \) and B 0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098 [arXiv:1812.03017] [INSPIRE].
  18. [18]
    P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
  19. [19]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,d → μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].
  20. [20]
    Y.G. Aditya, K.J. Healey and A.A. Petrov, Faking B s → μ + μ , Phys. Rev. D 87 (2013) 074028 [arXiv:1212.4166] [INSPIRE].
  21. [21]
    M. Beneke, C. Bobeth and R. Szafron, Enhanced electromagnetic correction to the rare B-meson decay B s,d → μ + μ , Phys. Rev. Lett. 120 (2018) 011801 [arXiv:1708.09152] [INSPIRE].
  22. [22]
    M. Beneke, Soft-collinear factorization in B decays, Nucl. Part. Phys. Proc. 261-262 (2015) 311 [arXiv:1501.07374] [INSPIRE].
  23. [23]
    K.G. Chetyrkin, M. Misiak and M. Münz, Weak radiative B meson decay beyond leading logarithms, Phys. Lett. B 400 (1997) 206 [Erratum ibid. B 425 (1998) 414] [hep-ph/9612313] [INSPIRE].
  24. [24]
    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and mt dependence of BR[B → X s+], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].
  25. [25]
    M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].
  26. [26]
    M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators, JHEP 03 (2018) 001 [arXiv:1712.04416] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  28. [28]
    B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H.H. Patel, Package-X: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].
  30. [30]
    H.H. Patel, Package-X 2.0: a Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].
  31. [31]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  32. [32]
    R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [INSPIRE].
  33. [33]
    S. Alte, M. König and M. Neubert, Effective field theory after a new-physics discovery, JHEP 08 (2018) 095 [arXiv:1806.01278] [INSPIRE].
  34. [34]
    M. Beneke, M. Garny, R. Szafron and J. Wang, Violation of the Kluberg-Stern-Zuber theorem in SCET, JHEP 09 (2019) 101 [arXiv:1907.05463] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.J. Buras and M. Münz, Effective hamiltonian for B → X s e + e beyond leading logarithms in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [INSPIRE].
  36. [36]
    M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V l + l , Vγ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].
  37. [37]
    M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N -jet operators. Part II, JHEP 11 (2018) 112 [arXiv:1808.04742] [INSPIRE].
  38. [38]
    B.O. Lange and M. Neubert, Renormalization group evolution of the B meson light cone distribution amplitude, Phys. Rev. Lett. 91 (2003) 102001 [hep-ph/0303082] [INSPIRE].
  39. [39]
    M.G. Echevarŕıa, A. Idilbi and I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions, Phys. Lett. B 726 (2013) 795 [arXiv:1211.1947] [INSPIRE].
  40. [40]
    A.G. Grozin and M. Neubert, Asymptotics of heavy meson form-factors, Phys. Rev. D 55 (1997) 272 [hep-ph/9607366] [INSPIRE].
  41. [41]
    M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [INSPIRE].
  42. [42]
    M. Beneke, Soft-collinear effective theory, lectures given at the Helmholtz International Summer School on Heavy Quark Physics , June 6–16, Dubna, Russia (2005).Google Scholar
  43. [43]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
  44. [44]
    T. Becher, G. Bell and M. Neubert, Factorization and resummation for jet broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].
  45. [45]
    M. Beneke and J. Rohrwild, B meson distribution amplitude from B → γlν, Eur. Phys. J. C 71 (2011) 1818 [arXiv:1110.3228] [INSPIRE].
  46. [46]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].
  47. [47]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The two-loop soft function for heavy quark pair production at future linear colliders, Phys. Rev. D 92 (2015) 045034 [arXiv:1408.5134] [INSPIRE].
  48. [48]
    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Bell, M. Beneke, T. Huber and X.-Q. Li, Heavy-to-light currents at NNLO in SCET and semi-inclusive \( \overline{B} \) → X s l + l decay, Nucl. Phys. B 843 (2011) 143 [arXiv:1007.3758] [INSPIRE].
  50. [50]
    K. De Bruyn et al., Probing new physics via the \( {B}_s^0 \) → μ + μ effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].
  51. [51]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  52. [52]
    Flavour Lattice Averaging Group collaboration, FLAG review 2019, arXiv:1902.08191 [INSPIRE].
  53. [53]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  54. [54]
    P. Gambino, K.J. Healey and S. Turczyk, Taming the higher power corrections in semileptonic B decays, Phys. Lett. B 763 (2016) 60 [arXiv:1606.06174] [INSPIRE].
  55. [55]
    J. Charles et al., Current status of the Standard Model CKM fit and constraints onF = 2 New Physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].
  56. [56]
    UTfit collaboration, Unitarity triangle analysis in the standard model from the UTfit collaboration, PoS(ICHEP2016)554.Google Scholar
  57. [57]
    C. McNeile et al., High-precision fB s and HQET from relativistic lattice QCD, Phys. Rev. D 85 (2012) 031503 [arXiv:1110.4510] [INSPIRE].
  58. [58]
    Fermilab Lattice, MILC collaboration, B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].
  59. [59]
    H. Na et al., The B and B s meson decay constants from lattice QCD, Phys. Rev. D 86 (2012) 034506 [arXiv:1202.4914] [INSPIRE].
  60. [60]
    N.H. Christ et al., B-meson decay constants from 2 + 1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks, Phys. Rev. D 91 (2015) 054502 [arXiv:1404.4670] [INSPIRE].
  61. [61]
    Y. Aoki et al., Neutral B meson mixings and B meson decay constants with static heavy and domain-wall light quarks, Phys. Rev. D 91 (2015) 114505 [arXiv:1406.6192] [INSPIRE].
  62. [62]
    ETM collaboration, Mass of the b quark and B-meson decay constants from N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 93 (2016) 114505 [arXiv:1603.04306] [INSPIRE].
  63. [63]
    HPQCD collaboration, B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s and c quarks, Phys. Rev. Lett. 110 (2013) 222003 [arXiv:1302.2644] [INSPIRE].
  64. [64]
    C. Hughes, C.T.H. Davies and C.J. Monahan, New methods for B meson decay constants and form factors from lattice NRQCD, Phys. Rev. D 97 (2018) 054509 [arXiv:1711.09981] [INSPIRE].
  65. [65]
    LHCb collaboration, First evidence for the decay \( {B}_s^0 \) → μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].
  66. [66]
    M. Beneke and M. Neubert, QCD factorization for B → PP and B → PV decays, Nucl. Phys. B 675 (2003) 333 [hep-ph/0308039] [INSPIRE].
  67. [67]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  68. [68]
    M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with non-Abelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].
  69. [69]
    A.K. Leibovich, Z. Ligeti and M.B. Wise, Comment on quark masses in SCET, Phys. Lett. B 564 (2003) 231 [hep-ph/0303099] [INSPIRE].
  70. [70]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physik Department T31Technische Universität MünchenGarchingGermany

Personalised recommendations