Journal of High Energy Physics

, 2019:229 | Cite as

Symmetries, charges and conservation laws at causal diamonds in general relativity

  • Venkatesa Chandrasekaran
  • Kartik PrabhuEmail author
Open Access
gular Article - Theoretical Physics


We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the 2-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries are conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.


Classical Theories of Gravity Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  3. [3]
    R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  4. [4]
    S. Carlip, Black hole entropy from conformal field theory in any dimension, Phys. Rev. Lett. 82 (1999) 2828 [hep-th/9812013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A.P. Balachandran, L. Chandar and A. Momen, Edge states in gravity and black hole physics, Nucl. Phys. B 461 (1996) 581 [gr-qc/9412019] [INSPIRE].
  6. [6]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Kirklin, Unambiguous Phase Spaces for Subregions, JHEP 03 (2019) 116 [arXiv:1901.09857] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  10. [10]
    D. Harlow and J.-Q. Wu, Covariant phase space with boundaries, arXiv:1906.08616 [INSPIRE].
  11. [11]
    A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev. D 85 (2012) 104049 [Erratum ibid. D 87 (2013) 069904] [arXiv:1105.3445] [INSPIRE].
  12. [12]
    T. Padmanabhan, General Relativity from a Thermodynamic Perspective, Gen. Rel. Grav. 46 (2014) 1673 [arXiv:1312.3253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    F. Hopfmüller and L. Freidel, Null Conservation Laws for Gravity, Phys. Rev. D 97 (2018) 124029 [arXiv:1802.06135] [INSPIRE].
  14. [14]
    T. Jacobson, Thermodynamics of space-time: The Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].
  15. [15]
    W. Wieland, New boundary variables for classical and quantum gravity on a null surface, Class. Quant. Grav. 34 (2017) 215008 [arXiv:1704.07391] [INSPIRE].
  16. [16]
    R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].
  17. [17]
    W. Wieland, Generating functional for gravitational null initial data, arXiv:1905.06357 [INSPIRE].
  18. [18]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].
  19. [19]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black Hole Entropy and Soft Hair, JHEP 12 (2018) 098 [arXiv:1810.01847] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.M. Bardeen, B. Carter and S.W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].
  23. [23]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    T. Jacobson, Entanglement Equilibrium and the Einstein Equation, Phys. Rev. Lett. 116 (2016) 201101 [arXiv:1505.04753] [INSPIRE].
  25. [25]
    T. Jacobson and M. Visser, Gravitational Thermodynamics of Causal Diamonds in (A)dS, arXiv:1812.01596 [INSPIRE].
  26. [26]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].
  27. [27]
    V. Chandrasekaran, É. É. Flanagan and K. Prabhu, Symmetries and charges of general relativity at null boundaries, JHEP 11 (2018) 125 [arXiv:1807.11499] [INSPIRE].
  28. [28]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Troessaert, The BMS4 algebra at spatial infinity, Class. Quant. Grav. 35 (2018) 074003 [arXiv:1704.06223] [INSPIRE].
  30. [30]
    K. Prabhu, Conservation of asymptotic charges from past to future null infinity: Maxwell fields, JHEP 10 (2018) 113 [arXiv:1808.07863] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    K. Prabhu, Conservation of asymptotic charges from past to future null infinity: Supermomentum in general relativity, JHEP 03 (2019) 148 [arXiv:1902.08200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    R.M. Wald, General Relativity, The University of Chicago Press (1984) [INSPIRE].
  33. [33]
    R. Geroch, Asymptotic structure of space-time, in Asymptotic structure of space-time, F.P. Esposito and L. Witten eds., Plenum Press, New York (1977) [INSPIRE].
  34. [34]
    A. Ashtekar and M. Streubel, Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585 [INSPIRE].
  35. [35]
    A. Ashtekar, Geometry and Physics of Null Infinity, arXiv:1409.1800 [INSPIRE].
  36. [36]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  37. [37]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  38. [38]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S. Hollands and A. Thorne, Bondi mass cannot become negative in higher dimensions, Commun. Math. Phys. 333 (2015) 1037 [arXiv:1307.1603] [INSPIRE].
  40. [40]
    S. Hollands, A. Ishibashi and R.M. Wald, BMS Supertranslations and Memory in Four and Higher Dimensions, Class. Quant. Grav. 34 (2017) 155005 [arXiv:1612.03290] [INSPIRE].
  41. [41]
    R. Penrose, Techniques of differential topology in relativity, in CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 7, SIAM, Philadelphia (1972) [INSPIRE].
  42. [42]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and Superrotations at the Black Hole Horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].
  43. [43]
    E. Morales, On a Second Law of Black Hole Mechanics in a Higher Derivative Theory of Gravity, Ph.D. Thesis, University of Gottingen (2008).Google Scholar
  44. [44]
    K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    T. Mädler, Affine-null metric formulation of general relativity at two intersecting null hypersurfaces, Phys. Rev. D 99 (2019) 104048 [arXiv:1810.04743] [INSPIRE].
  46. [46]
    A. Ashtekar and S. Bahrami, Asymptotics with a positive cosmological constant. IV. The no-incoming radiation condition, Phys. Rev. D 100 (2019) 024042 [arXiv:1904.02822] [INSPIRE].
  47. [47]
    E. Gourgoulhon and J.L. Jaramillo, A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rept. 423 (2006) 159 [gr-qc/0503113] [INSPIRE].
  48. [48]
    I. Booth, Spacetime near isolated and dynamical trapping horizons, Phys. Rev. D 87 (2013) 024008 [arXiv:1207.6955] [INSPIRE].
  49. [49]
    E. Witten, Light Rays, Singularities and All That, arXiv:1901.03928 [INSPIRE].
  50. [50]
    C. Dappiaggi, N. Pinamonti and M. Porrmann, Local causal structures, Hadamard states and the principle of local covariance in quantum field theory, Commun. Math. Phys. 304 (2011) 459 [arXiv:1001.0858] [INSPIRE].
  51. [51]
    Y. Choquet-Bruhat, P.T. Chrusciel and J.M. Martin-Garcia, The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions, Annales Henri Poincaŕe 12 (2011) 419 [arXiv:1006.4467] [INSPIRE].
  52. [52]
    Y. Choquet-Bruhat, P.T. Chrusciel and J.M. Martin-Garcia, An Existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations, in 4th International Conference on Complex Analysis and Dynamical Systems, Nahariya, Israel, 18–22 May 2009 (2010) [arXiv:1006.5558] [INSPIRE].
  53. [53]
    E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [Erratum ibid. 4 (1963) 998] [INSPIRE].
  54. [54]
    R.P. Geroch, A. Held and R. Penrose, A space-time calculus based on pairs of null directions, J. Math. Phys. 14 (1973) 874 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    S. Carlip, Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon, Phys. Rev. Lett. 120 (2018) 101301 [arXiv:1702.04439] [INSPIRE].
  56. [56]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
  57. [57]
    S. Hollands and A. Ishibashi, News versus information, Class. Quant. Grav. 36 (2019) 195001 [arXiv:1904.00007] [INSPIRE].
  58. [58]
    W. Wieland, Fock representation of gravitational boundary modes and the discreteness of the area spectrum, Annales Henri Poincaŕe 18 (2017) 3695 [arXiv:1706.00479] [INSPIRE].
  59. [59]
    X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
  60. [60]
    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M. Van Raamsdonk, Gravitational positive energy theorems from information inequalities, PTEP 2016 (2016) 12C109 [arXiv:1605.01075] [INSPIRE].
  62. [62]
    R. Bousso, V. Chandrasekaran and A. Shahbazi-Moghaddam, Ignorance is Cheap: From Black Hole Entropy To Energy-Minimizing States In QFT, arXiv:1906.05299 [INSPIRE].
  63. [63]
    A.W. Knapp, Lie Groups, Lie Algebras, and Cohomology, Princeton University Press (1988).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical Physics and Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)Cornell UniversityIthacaU.S.A.

Personalised recommendations