# Symmetries, charges and conservation laws at causal diamonds in general relativity

- 13 Downloads

## Abstract

We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the 2-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries are conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.

## Keywords

Classical Theories of Gravity Space-Time Symmetries## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

## References

- [1]J. Lee and R.M. Wald,
*Local symmetries and constraints*,*J. Math. Phys.***31**(1990) 725 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [2]V. Iyer and R.M. Wald,
*Some properties of Noether charge and a proposal for dynamical black hole entropy*,*Phys. Rev.***D 50**(1994) 846 [gr-qc/9403028] [INSPIRE]. - [3]R.M. Wald and A. Zoupas,
*A General definition of ‘conserved quantities’ in general relativity and other theories of gravity*,*Phys. Rev.***D 61**(2000) 084027 [gr-qc/9911095] [INSPIRE]. - [4]S. Carlip,
*Black hole entropy from conformal field theory in any dimension*,*Phys. Rev. Lett.***82**(1999) 2828 [hep-th/9812013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [5]A.P. Balachandran, L. Chandar and A. Momen,
*Edge states in gravity and black hole physics*,*Nucl. Phys.***B 461**(1996) 581 [gr-qc/9412019] [INSPIRE]. - [6]W. Donnelly and L. Freidel,
*Local subsystems in gauge theory and gravity*,*JHEP***09**(2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [7]A.J. Speranza,
*Local phase space and edge modes for diffeomorphism-invariant theories*,*JHEP***02**(2018) 021 [arXiv:1706.05061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [8]J. Kirklin,
*Unambiguous Phase Spaces for Subregions*,*JHEP***03**(2019) 116 [arXiv:1901.09857] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [9]A. Strominger,
*Lectures on the Infrared Structure of Gravity and Gauge Theory*, arXiv:1703.05448 [INSPIRE]. - [10]
- [11]A.C. Wall,
*A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices*,*Phys. Rev.***D 85**(2012) 104049 [*Erratum ibid.***D 87**(2013) 069904] [arXiv:1105.3445] [INSPIRE]. - [12]T. Padmanabhan,
*General Relativity from a Thermodynamic Perspective*,*Gen. Rel. Grav.***46**(2014) 1673 [arXiv:1312.3253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [13]F. Hopfmüller and L. Freidel,
*Null Conservation Laws for Gravity*,*Phys. Rev.***D 97**(2018) 124029 [arXiv:1802.06135] [INSPIRE]. - [14]T. Jacobson,
*Thermodynamics of space-time: The Einstein equation of state*,*Phys. Rev. Lett.***75**(1995) 1260 [gr-qc/9504004] [INSPIRE]. - [15]W. Wieland,
*New boundary variables for classical and quantum gravity on a null surface*,*Class. Quant. Grav.***34**(2017) 215008 [arXiv:1704.07391] [INSPIRE]. - [16]
- [17]
- [18]S.W. Hawking, M.J. Perry and A. Strominger,
*Soft Hair on Black Holes*,*Phys. Rev. Lett.***116**(2016) 231301 [arXiv:1601.00921] [INSPIRE]. - [19]S.W. Hawking, M.J. Perry and A. Strominger,
*Superrotation Charge and Supertranslation Hair on Black Holes*,*JHEP***05**(2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [20]S. Haco, S.W. Hawking, M.J. Perry and A. Strominger,
*Black Hole Entropy and Soft Hair*,*JHEP***12**(2018) 098 [arXiv:1810.01847] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [21]J.M. Bardeen, B. Carter and S.W. Hawking,
*The Four laws of black hole mechanics*,*Commun. Math. Phys.***31**(1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [22]
- [23]S. Ryu and T. Takayanagi,
*Holographic derivation of entanglement entropy from AdS/CFT*,*Phys. Rev. Lett.***96**(2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [24]T. Jacobson,
*Entanglement Equilibrium and the Einstein Equation*,*Phys. Rev. Lett.***116**(2016) 201101 [arXiv:1505.04753] [INSPIRE]. - [25]T. Jacobson and M. Visser,
*Gravitational Thermodynamics of Causal Diamonds in (A)dS*, arXiv:1812.01596 [INSPIRE]. - [26]J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers,
*Entanglement, holography and causal diamonds*,*JHEP***08**(2016) 162 [arXiv:1606.03307] [INSPIRE]. - [27]V. Chandrasekaran, É. É. Flanagan and K. Prabhu,
*Symmetries and charges of general relativity at null boundaries*,*JHEP***11**(2018) 125 [arXiv:1807.11499] [INSPIRE]. - [28]A. Strominger,
*On BMS Invariance of Gravitational Scattering*,*JHEP***07**(2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar - [29]C. Troessaert,
*The BMS4 algebra at spatial infinity*,*Class. Quant. Grav.***35**(2018) 074003 [arXiv:1704.06223] [INSPIRE]. - [30]K. Prabhu,
*Conservation of asymptotic charges from past to future null infinity: Maxwell fields*,*JHEP***10**(2018) 113 [arXiv:1808.07863] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [31]K. Prabhu,
*Conservation of asymptotic charges from past to future null infinity: Supermomentum in general relativity*,*JHEP***03**(2019) 148 [arXiv:1902.08200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [32]R.M. Wald,
*General Relativity*, The University of Chicago Press (1984) [INSPIRE]. - [33]R. Geroch,
*Asymptotic structure of space-time*, in*Asymptotic structure of space-time*, F.P. Esposito and L. Witten eds., Plenum Press, New York (1977) [INSPIRE]. - [34]A. Ashtekar and M. Streubel,
*Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity*,*Proc. Roy. Soc. Lond.***A 376**(1981) 585 [INSPIRE]. - [35]
- [36]H. Bondi, M.G.J. van der Burg and A.W.K. Metzner,
*Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems*,*Proc. Roy. Soc. Lond.***A 269**(1962) 21 [INSPIRE]. - [37]R.K. Sachs,
*Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times*,*Proc. Roy. Soc. Lond.***A 270**(1962) 103 [INSPIRE]. - [38]R. Sachs,
*Asymptotic symmetries in gravitational theory*,*Phys. Rev.***128**(1962) 2851 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [39]S. Hollands and A. Thorne,
*Bondi mass cannot become negative in higher dimensions*,*Commun. Math. Phys.***333**(2015) 1037 [arXiv:1307.1603] [INSPIRE]. - [40]S. Hollands, A. Ishibashi and R.M. Wald,
*BMS Supertranslations and Memory in Four and Higher Dimensions*,*Class. Quant. Grav.***34**(2017) 155005 [arXiv:1612.03290] [INSPIRE]. - [41]R. Penrose,
*Techniques of differential topology in relativity*, in*CBMS-NSF Regional Conference Series in Applied Mathematics*, vol. 7, SIAM, Philadelphia (1972) [INSPIRE]. - [42]L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino,
*Supertranslations and Superrotations at the Black Hole Horizon*,*Phys. Rev. Lett.***116**(2016) 091101 [arXiv:1511.08687] [INSPIRE]. - [43]E. Morales,
*On a Second Law of Black Hole Mechanics in a Higher Derivative Theory of Gravity*, Ph.D. Thesis, University of Gottingen (2008).Google Scholar - [44]K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan,
*A Boundary Term for the Gravitational Action with Null Boundaries*,*Gen. Rel. Grav.***48**(2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [45]T. Mädler,
*Affine-null metric formulation of general relativity at two intersecting null hypersurfaces*,*Phys. Rev.***D 99**(2019) 104048 [arXiv:1810.04743] [INSPIRE]. - [46]A. Ashtekar and S. Bahrami,
*Asymptotics with a positive cosmological constant. IV. The no-incoming radiation condition*,*Phys. Rev.***D 100**(2019) 024042 [arXiv:1904.02822] [INSPIRE]. - [47]E. Gourgoulhon and J.L. Jaramillo,
*A 3+1 perspective on null hypersurfaces and isolated horizons*,*Phys. Rept.***423**(2006) 159 [gr-qc/0503113] [INSPIRE]. - [48]I. Booth,
*Spacetime near isolated and dynamical trapping horizons*,*Phys. Rev.***D 87**(2013) 024008 [arXiv:1207.6955] [INSPIRE]. - [49]
- [50]C. Dappiaggi, N. Pinamonti and M. Porrmann,
*Local causal structures, Hadamard states and the principle of local covariance in quantum field theory*,*Commun. Math. Phys.***304**(2011) 459 [arXiv:1001.0858] [INSPIRE]. - [51]Y. Choquet-Bruhat, P.T. Chrusciel and J.M. Martin-Garcia,
*The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions*,*Annales Henri Poincaŕe***12**(2011) 419 [arXiv:1006.4467] [INSPIRE]. - [52]Y. Choquet-Bruhat, P.T. Chrusciel and J.M. Martin-Garcia,
*An Existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations*, in*4th International Conference on Complex Analysis and Dynamical Systems*, Nahariya, Israel, 18–22 May 2009 (2010) [arXiv:1006.5558] [INSPIRE]. - [53]E. Newman and R. Penrose,
*An Approach to gravitational radiation by a method of spin coefficients*,*J. Math. Phys.***3**(1962) 566 [*Erratum ibid.***4**(1963) 998] [INSPIRE]. - [54]R.P. Geroch, A. Held and R. Penrose,
*A space-time calculus based on pairs of null directions*,*J. Math. Phys.***14**(1973) 874 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [55]S. Carlip,
*Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon*,*Phys. Rev. Lett.***120**(2018) 101301 [arXiv:1702.04439] [INSPIRE]. - [56]M. Guica, T. Hartman, W. Song and A. Strominger,
*The Kerr/CFT Correspondence*,*Phys. Rev.***D 80**(2009) 124008 [arXiv:0809.4266] [INSPIRE]. - [57]S. Hollands and A. Ishibashi,
*News versus information*,*Class. Quant. Grav.***36**(2019) 195001 [arXiv:1904.00007] [INSPIRE]. - [58]W. Wieland,
*Fock representation of gravitational boundary modes and the discreteness of the area spectrum*,*Annales Henri Poincaŕe***18**(2017) 3695 [arXiv:1706.00479] [INSPIRE]. - [59]X. Dong, D. Harlow and A.C. Wall,
*Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality*,*Phys. Rev. Lett.***117**(2016) 021601 [arXiv:1601.05416] [INSPIRE]. - [60]D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh,
*Relative entropy equals bulk relative entropy*,*JHEP***06**(2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [61]N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M. Van Raamsdonk,
*Gravitational positive energy theorems from information inequalities*,*PTEP***2016**(2016) 12C109 [arXiv:1605.01075] [INSPIRE]. - [62]R. Bousso, V. Chandrasekaran and A. Shahbazi-Moghaddam,
*Ignorance is Cheap: From Black Hole Entropy To Energy-Minimizing States In QFT*, arXiv:1906.05299 [INSPIRE]. - [63]A.W. Knapp,
*Lie Groups, Lie Algebras, and Cohomology*, Princeton University Press (1988).Google Scholar