Advertisement

Journal of High Energy Physics

, 2019:228 | Cite as

Long distance effects in inclusive rare B decays and phenomenology of \( \overline{B} \)→ Xd+

  • Tobias Huber
  • Tobias Hurth
  • Jack Jenkins
  • Enrico Lunghi
  • Qin QinEmail author
  • K. Keri Vos
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

Rare inclusive B decays such as \( \overline{B} \)→ Xs(d)+ are interesting probes for physics beyond the Standard Model. Due to the complementarity to their exclusive counter- parts, they might shed light on the anomalies currently seen in exclusive b → s transitions. Distinguishing new-physics effects from the Standard Model requires precise predictions and necessitates the control of long distance effects. In the present work we revisit and improve the description of various long distance effects in inclusive decays such as charmo-nium and light-quark resonances, nonfactorizable power corrections, and cascade decays. We then apply these results to a state-of-the-art phenomenological study of \( \overline{B} \)→ Xdℓ+, including also logarithmically enhanced QED corrections and the recently calculated five- body contributions. To fully exploit the new-physics potential of inclusive flavour-changing neutral current decays, the \( \overline{B} \)→ Xdℓ+ observables should be measured in a dedicated Belle II analysis.

Keywords

Heavy Quark Physics CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    BaBar collaboration, Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B → K (∗) l + l , Phys. Rev. D 86 (2012) 032012 [arXiv:1204.3933] [INSPIRE].
  4. [4]
    Belle collaboration, Lepton-Flavor-Dependent Angular Analysis of B → K + , Phys. Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].
  5. [5]
    LHCb collaboration, Search for lepton-universality violation in B + → K + + decays, Phys. Rev. Lett. 122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].
  6. [6]
    LHCb collaboration, Test of lepton universality with B 0 → K 0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of the phase difference between short- and long-distance amplitudes in the B + → K + μ + μ decay, Eur. Phys. J. C 77 (2017) 161 [arXiv:1612.06764] [INSPIRE].
  8. [8]
    LHCb collaboration, Differential branching fraction and angular moments analysis of the decay B 0 → K + π μ + μ in the \( {K}_{0,2}^{\ast } \) (1430)0 region, JHEP 12 (2016) 065 [arXiv:1609.04736] [INSPIRE].
  9. [9]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of B → K (∗) μ + μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
  10. [10]
    LHCb collaboration, Angular analysis of the B 0 → K 0 μ + μ decay using 3 fb 1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  11. [11]
    LHCb collaboration, Angular analysis and differential branching fraction of the decay B 0 s → ϕμ + μ , JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
  12. [12]
    LHCb collaboration, Differential branching fraction and angular analysis of \( {\Lambda}_b^o\to \Lambda {\mu}^{+}{\mu}^{-} \) decays, JHEP 06 (2015) 115 [Erratum ibid. 1809 (2018) 145] [arXiv:1503.07138] [INSPIRE].
  13. [13]
    CMS collaboration, Measurement of angular parameters from the decay B0 K0 μ + μ in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 781 (2018) 517 [arXiv:1710.02846] [INSPIRE].
  14. [14]
    ATLAS collaboration, Angular analysis of B 0 → K μ + μ decays in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 10 (2018) 047 [arXiv:1805.04000] [INSPIRE].
  15. [15]
    Belle collaboration, Test of lepton flavor universality in B → K ℓ + decays, arXiv:1908.01848 [INSPIRE].
  16. [16]
    Belle-II collaboration, The Belle II Physics Book, arXiv:1808.10567 [INSPIRE].
  17. [17]
    H.M. Asatrian, K. Bieri, C. Greub and M. Walker, Virtual corrections and bremsstrahlung corrections to b → d ℓ + in the standard model, Phys. Rev. D 69 (2004) 074007 [hep-ph/0312063] [INSPIRE].
  18. [18]
    M. Misiak, The b → se + e and b → s \( \mathcal{Y} \) decays with next-to-leading logarithmic QCD corrections, Nucl. Phys. B 393 (1993) 23 [Erratum ibid. B 439 (1995) 461] [INSPIRE].
  19. [19]
    A.J. Buras and M. Münz, Effective Hamiltonian for B → X s e + e beyond leading logarithms in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [INSPIRE].
  20. [20]
    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and mt dependence of BR[B → Xs l + l ], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].
  21. [21]
    P. Gambino, M. Gorbahn and U. Haisch, Anomalous dimension matrix for radiative and rare semileptonic B decays up to three loops, Nucl. Phys. B 673 (2003) 238 [hep-ph/0306079] [INSPIRE].
  22. [22]
    M. Gorbahn and U. Haisch, Effective Hamiltonian for non-leptonic |F | = 1 decays at NNLO in QCD, Nucl. Phys. B 713 (2005) 291 [hep-ph/0411071] [INSPIRE].
  23. [23]
    H.H. Asatryan, H.M. Asatrian, C. Greub and M. Walker, Calculation of two loop virtual corrections to b → sl + l in the standard model, Phys. Rev. D 65 (2002) 074004 [hep-ph/0109140] [INSPIRE].
  24. [24]
    H.H. Asatrian, H.M. Asatrian, C. Greub and M. Walker, Two loop virtual corrections to B → X s l + l in the standard model, Phys. Lett. B 507 (2001) 162 [hep-ph/0103087] [INSPIRE].
  25. [25]
    H.H. Asatryan, H.M. Asatrian, C. Greub and M. Walker, Complete gluon bremsstrahlung corrections to the process b → sl + l , Phys. Rev. D 66 (2002) 034009 [hep-ph/0204341] [INSPIRE].
  26. [26]
    A. Ghinculov, T. Hurth, G. Isidori and Y.P. Yao, Forward backward asymmetry in B → Xs l + l at the NNLL level, Nucl. Phys. B 648 (2003) 254 [hep-ph/0208088] [INSPIRE].
  27. [27]
    H.M. Asatrian, K. Bieri, C. Greub and A. Hovhannisyan, NNLL corrections to the angular distribution and to the forward backward asymmetries in B → X s l + l , Phys. Rev. D 66 (2002) 094013 [hep-ph/0209006] [INSPIRE].
  28. [28]
    H.M. Asatrian, H.H. Asatryan, A. Hovhannisyan and V. Poghosyan, Complete bremsstrahlung corrections to the forward backward asymmetries in b → X (s) + , Mod. Phys. Lett. A 19 (2004) 603 [hep-ph/0311187] [INSPIRE].
  29. [29]
    A. Ghinculov, T. Hurth, G. Isidori and Y.P. Yao, New NNLL results on the decay B → X (s) + , Eur. Phys. J. C 33 (2004) S288 [hep-ph/0310187] [INSPIRE].
  30. [30]
    A. Ghinculov, T. Hurth, G. Isidori and Y.P. Yao, The Rare decay B → X s l + l to NNLL precision for arbitrary dilepton invariant mass, Nucl. Phys. B 685 (2004) 351 [hep-ph/0312128] [INSPIRE].
  31. [31]
    C. Greub, V. Pilipp and C. Schupbach, Analytic calculation of two-loop QCD corrections to b → sl + l in the high q 2 region, JHEP 12 (2008) 040 [arXiv:0810.4077] [INSPIRE].Google Scholar
  32. [32]
    C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline{B} \) → X s + and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].
  33. [33]
    S. de Boer, Two loop virtual corrections to b → (d, s) + and c → uℓ + for arbitrary momentum transfer, Eur. Phys. J. C 77 (2017) 801 [arXiv:1707.00988] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline{B} \) → X s l + l , Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].
  35. [35]
    T. Huber, T. Hurth and E. Lunghi, Logarithmically Enhanced Corrections to the Decay Rate and Forward Backward Asymmetry in \( \overline{B} \) → X s + , Nucl. Phys. B 802 (2008) 40 [arXiv:0712.3009] [INSPIRE].Google Scholar
  36. [36]
    T. Huber, T. Hurth and E. Lunghi, Inclusive B → X s + : complete angular analysis and a thorough study of collinear photons, JHEP 06 (2015) 176 [arXiv:1503.04849] [INSPIRE].Google Scholar
  37. [37]
    A.F. Falk, M.E. Luke and M.J. Savage, Nonperturbative contributions to the inclusive rare decays B → X s γ and B → X s l + l , Phys. Rev. D 49 (1994) 3367 [hep-ph/9308288] [INSPIRE].
  38. [38]
    A. Ali, G. Hiller, L.T. Handoko and T. Morozumi, Power corrections in the decay rate and distributions in B → X s l + l in the Standard Model, Phys. Rev. D 55 (1997) 4105 [hep-ph/9609449] [INSPIRE].
  39. [39]
    J.-W. Chen, G. Rupak and M.J. Savage, Non-1/m n power suppressed contributions to inclusive B → X s l + l decays, Phys. Lett. B 410 (1997) 285 [hep-ph/9705219] [INSPIRE].
  40. [40]
    G. Buchalla and G. Isidori, Nonperturbative effects in \( \overline{B} \) → X s l + l for large dilepton invariant mass, Nucl. Phys. B 525 (1998) 333 [hep-ph/9801456] [INSPIRE].
  41. [41]
    C.W. Bauer and C.N. Burrell, Nonperturbative corrections to moments of the decay B → Xs ℓ + , Phys. Rev. D 62 (2000) 114028 [hep-ph/9911404] [INSPIRE].
  42. [42]
    Z. Ligeti and F.J. Tackmann, Precise predictions for B → X s l + l in the large q 2 region, Phys. Lett. B 653 (2007) 404 [arXiv:0707.1694] [INSPIRE].Google Scholar
  43. [43]
    G. Buchalla, G. Isidori and S.J. Rey, Corrections of order \( {\Lambda}_{QCD}^2/{m}_c^2 \) to inclusive rare B decays, Nucl. Phys. B 511 (1998) 594 [hep-ph/9705253] [INSPIRE].
  44. [44]
    D. Seidel, Analytic two loop virtual corrections to b → dℓ + , Phys. Rev. D 70 (2004) 094038 [hep-ph/0403185] [INSPIRE].
  45. [45]
    T. Huber, Q. Qin and K.K. Vos, Five-particle contributions to the inclusive rare \( \overline{B} \) → Xs(d) + decays, Eur. Phys. J. C 78 (2018) 748 [arXiv:1806.11521] [INSPIRE].Google Scholar
  46. [46]
    M. Neubert, On the inclusive determination of |V (ub)| from the lepton invariant mass spectrum, JHEP 07 (2000) 022 [hep-ph/0006068] [INSPIRE].
  47. [47]
    C.W. Bauer, Z. Ligeti and M.E. Luke, Precision determination of |V (ub)| from inclusive decays, Phys. Rev. D 64 (2001) 113004 [hep-ph/0107074] [INSPIRE].
  48. [48]
    P. Gambino, K.J. Healey and S. Turczyk, Taming the higher power corrections in semileptonic B decays, Phys. Lett. B 763 (2016) 60 [arXiv:1606.06174] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Gambino and J.F. Kamenik, Lepton energy moments in semileptonic charm decays, Nucl. Phys. B 840 (2010) 424 [arXiv:1004.0114] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    F. Krüger and L.M. Sehgal, Lepton polarization in the decays B → X s μ + μ and B → Xs τ + τ , Phys. Lett. B 380 (1996) 199 [hep-ph/9603237] [INSPIRE].
  51. [51]
    F. Krüger and L.M. Sehgal, CP violation in the decay B → X d e + e , Phys. Rev. D 55 (1997) 2799 [hep-ph/9608361] [INSPIRE].
  52. [52]
    P. Ko, J. Lee and H.S. Song, Inclusive S wave charmonium productions in B decays, Phys. Rev. D 53 (1996) 1409 [hep-ph/9510202] [INSPIRE].
  53. [53]
    M. Beneke, F. Maltoni and I.Z. Rothstein, QCD analysis of inclusive B decay into charmonium, Phys. Rev. D 59 (1999) 054003 [hep-ph/9808360] [INSPIRE].
  54. [54]
    M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, Penguins with Charm and Quark-Hadron Duality, Eur. Phys. J. C 61 (2009) 439 [arXiv:0902.4446] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in B → K () + and B → K γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].Google Scholar
  56. [56]
    J. Lyon and R. Zwicky, Resonances gone topsy turvy — the charm of QCD or new physics in b → sℓ + ?, arXiv:1406.0566 [INSPIRE].
  57. [57]
    T. Hurth, M. Fickinger, S. Turczyk and M. Benzke, Resolved Power Corrections to the Inclusive Decay \( \overline{B} \) → X s + , Nucl. Part. Phys. Proc. 285-286 (2017) 57 [arXiv:1711.01162] [INSPIRE].Google Scholar
  58. [58]
    M. Benzke, T. Hurth and S. Turczyk, Subleading power factorization in \( \overline{B} \) → X s + , JHEP 10 (2017) 031 [arXiv:1705.10366] [INSPIRE].Google Scholar
  59. [59]
    M.B. Voloshin, Large O(m 2 ) nonperturbative correction to the inclusive rate of the decay B → X (s)γ, Phys. Lett. B 397 (1997) 275 [hep-ph/9612483] [INSPIRE].
  60. [60]
    K.S.M. Lee and I.W. Stewart, Shape-function effects and split matching in B → X s l + l , Phys. Rev. D 74 (2006) 014005 [hep-ph/0511334] [INSPIRE].
  61. [61]
    K.S.M. Lee, Z. Ligeti, I.W. Stewart and F.J. Tackmann, Universality and mX cut effects in B → Xs l + l , Phys. Rev. D 74 (2006) 011501 [hep-ph/0512191] [INSPIRE].
  62. [62]
    K.S.M. Lee and F.J. Tackmann, Nonperturbative m X cut effects in B → X s l + l observables, Phys. Rev. D 79 (2009) 114021 [arXiv:0812.0001] [INSPIRE].Google Scholar
  63. [63]
    G. Bell, M. Beneke, T. Huber and X.-Q. Li, Heavy-to-light currents at NNLO in SCET and semi-inclusive \( \overline{B} \) → X s l + l decay, Nucl. Phys. B 843 (2011) 143 [arXiv:1007.3758] [INSPIRE].Google Scholar
  64. [64]
    K.S.M. Lee, Z. Ligeti, I.W. Stewart and F.J. Tackmann, Extracting short distance information from b → sl + l effectively, Phys. Rev. D 75 (2007) 034016 [hep-ph/0612156] [INSPIRE].
  65. [65]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  66. [66]
    K.G. Chetyrkin, M. Misiak and M. Münz, |F | = 1 nonleptonic effective Hamiltonian in a simpler scheme, Nucl. Phys. B 520 (1998) 279 [hep-ph/9711280] [INSPIRE].
  67. [67]
    P. Gambino and M. Misiak, Quark mass effects in \( \overline{B} \) → X s γ, Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [INSPIRE].
  68. [68]
    T. van Ritbergen, The Second order QCD contribution to the semileptonic b → u decay rate, Phys. Lett. B 454 (1999) 353 [hep-ph/9903226] [INSPIRE].
  69. [69]
    M. Jezabek and J.H. Kuhn, Lepton Spectra from Heavy Quark Decay, Nucl. Phys. B 320 (1989) 20 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    I.R. Blokland, A. Czarnecki, M. Ślusarczyk and F. Tkachov, Next-to-next-to-leading order calculations for heavy-to-light decays, Phys. Rev. D 71 (2005) 054004 [Erratum ibid. D 79 (2009) 019901] [hep-ph/0503039] [INSPIRE].
  71. [71]
    I.R. Blokland, A. Czarnecki, M. Ślusarczyk and F. Tkachov, Heavy to light decays with a two loop accuracy, Phys. Rev. Lett. 93 (2004) 062001 [hep-ph/0403221] [INSPIRE].
  72. [72]
    A. Czarnecki and K. Melnikov, Semileptonic b → u decays: Lepton invariant mass spectrum, Phys. Rev. Lett. 88 (2002) 131801 [hep-ph/0112264] [INSPIRE].
  73. [73]
    M. Brucherseifer, F. Caola and K. Melnikov, On the O(α 2 ) corrections to b → X u inclusive decays, Phys. Lett. B 721 (2013) 107 [arXiv:1302.0444] [INSPIRE].
  74. [74]
    G. Bell and T. Huber, Master integrals for the two-loop penguin contribution in non-leptonic B-decays, JHEP 12 (2014) 129 [arXiv:1410.2804] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M.B. Voloshin, Nonfactorization effects in heavy mesons and determination of |V (ub)| from inclusive semileptonic B decays, Phys. Lett. B 515 (2001) 74 [hep-ph/0106040] [INSPIRE].
  76. [76]
    M. Benzke, T. Hurth and S. Turczyk, work in progress.Google Scholar
  77. [77]
    C.S. Lim, T. Morozumi and A.I. Sanda, A Prediction for dΓ(b → sℓℓ)/dq 2 Including the Long Distance Effects, Phys. Lett. B 218 (1989) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(M 2 ): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
  79. [79]
    BES collaboration, Determination of the psi(3770), psi(4040), psi(4160) and psi(4415) resonance parameters, eConf C 070805 (2007) 02 [arXiv:0705.4500] [INSPIRE].
  80. [80]
    BaBar collaboration, Measurement of the e + e →π + π π 0 π 0 cross section using initial-state radiation at BABAR, Phys. Rev. D 96 (2017) 092009 [arXiv:1709.01171] [INSPIRE].
  81. [81]
    BaBar collaboration, The e + e → π + π π + π , K + K π + π and K + K K + K cross sections at center-of-mass energies 0.5-GeV–4.5-GeV measured with initial-state radiation, Phys. Rev. D 71 (2005) 052001 [hep-ex/0502025] [INSPIRE].
  82. [82]
    BaBar collaboration, The e + e 2(π + π )π 0 , 2(π + π )η, K + K π + π π 0 and K + K π + π η Cross Sections Measured with Initial-State Radiation, Phys. Rev. D 76 (2007) 092005 [Erratum ibid. D 77 (2008) 119902] [arXiv:0708.2461] [INSPIRE].
  83. [83]
    BaBar collaboration, Measurement of the \( {e}^{+}{e}^{-}\to {K}_S^0{K}^{\pm }{\pi}^{\mp }{\pi}^0 \) and \( {K}_S^0{K}^{\pm }{\pi}^{\mp}\eta \) cross S sections using initial-state radiation, Phys. Rev. D 95 (2017) 092005 [arXiv:1704.05009] [INSPIRE].
  84. [84]
    BaBar collaboration, The e + e 3(π + π ), 2(π + π π 0 ) and K + K 2(π + π ) cross sections at center-of-mass energies from production threshold to 4.5-GeV measured with initial-state radiation, Phys. Rev. D 73 (2006) 052003 [hep-ex/0602006] [INSPIRE].
  85. [85]
    BaBar collaboration, Cross sections for the reactions \( {e}^{+}{e}^{-}\to {K}_S^0{K}_L^0,{K}_S^0{K}_L^0{\pi}^{+}{\pi}^{-},{K}_S^0{K}_S^0{\pi}^{+}{\pi}^{-} \) and \( {K}_S^0{K}_S^0{K}^{+}{K}^{-} \) , from events with initial-state radiation, Phys. Rev. D 89 (2014) 092002 [arXiv:1403.7593] [INSPIRE].
  86. [86]
    BaBar collaboration, The e + e → K + K π + π , K + K π 0 π 0 and K + K K + K cross-sections measured with initial-state radiation, Phys. Rev. D 76 (2007) 012008 [arXiv:0704.0630] [INSPIRE].
  87. [87]
    BaBar collaboration, Measurements of e + e → K + K η, K + K π 0 and K 0 K ± π cross-sections using initial state radiation events, Phys. Rev. D 77 (2008) 092002 [arXiv:0710.4451] [INSPIRE].
  88. [88]
    BaBar collaboration, Study of the process e + e → π + π η using initial state radiation, Phys. Rev. D 97 (2018) 052007 [arXiv:1801.02960] [INSPIRE].
  89. [89]
    BaBar collaboration, Cross sections for the reactions \( {e}^{+}{e}^{-}\to {K}_S^0{K}_L^0{\pi}^0,{K}_S^0{K}_L^0\eta \) and \( {K}_S^0{K}_L^0{\pi}^0{\pi}^0 \) from events with initial-state radiation, Phys. Rev. D 95 (2017) 052001 [arXiv:1701.08297] [INSPIRE].
  90. [90]
    M. Davier, A. Höcker, B. Malaescu, C.-Z. Yuan and Z. Zhang, Update of the ALEPH non-strange spectral functions from hadronic τ decays, Eur. Phys. J. C 74 (2014) 2803 [arXiv:1312.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    R.V. Harlander and M. Steinhauser, rhad: A Program for the evaluation of the hadronic R ratio in the perturbative regime of QCD, Comput. Phys. Commun. 153 (2003) 244 [hep-ph/0212294] [INSPIRE].
  92. [92]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  93. [93]
    I. Dunietz and J.M. Soares, Direct CP-violation in b → dJ/ψ decays, Phys. Rev. D 49 (1994) 5904 [hep-ph/9312233] [INSPIRE].
  94. [94]
    J.M. Soares, More on direct CP-violation in b → dJ/ψ decays, Phys. Rev. D 52 (1995) 242 [hep-ph/9404336] [INSPIRE].
  95. [95]
    H.J. Lipkin, The Theoretical Basis and Phenomenology of the OZI Rule, Nucl. Phys. B 244 (1984) 147 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    H.J. Lipkin, The OZI Rule in Charmonium Decays Above D \( \overline{D} \) Threshold, Phys. Lett. B 179 (1986) 278 [INSPIRE].Google Scholar
  97. [97]
    N. Isgur and H.B. Thacker, On the origin of the OZI rule in QCD, Phys. Rev. D 64 (2001) 094507 [hep-lat/0005006] [INSPIRE].
  98. [98]
    M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at Subleading Power and Irreducible Uncertainties in \( \overline{B} \) → X s γ Decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].Google Scholar
  99. [99]
    A. Gunawardana and G. Paz, Reevaluating Uncertainties in \( \overline{B} \) → X s γ Decay, arXiv:1908.02812 [INSPIRE].
  100. [100]
    M. Beneke, G.A. Schuler and S. Wolf, Quarkonium momentum distributions in photoproduction and B decay, Phys. Rev. D 62 (2000) 034004 [hep-ph/0001062] [INSPIRE].
  101. [101]
    BESIII collaboration, Observation of electromagnetic Dalitz decays J/ψ → P e + e , Phys. Rev. D 89 (2014) 092008 [arXiv:1403.7042] [INSPIRE].
  102. [102]
    BESIII collaboration, Study of the Dalitz decay J/ψ → e + e η, Phys. Rev. D 99 (2019) 012006 [arXiv:1810.03091] [INSPIRE].
  103. [103]
    BESIII collaboration, Measurement of B(J/ψ → η i e + e ) and search for a dark photon, Phys. Rev. D 99 (2019) 012013 [arXiv:1809.00635] [INSPIRE].
  104. [104]
    BESIII collaboration, Observation of ψ(3686) → e + e χ cJ and χ cJ → e + e J/ψ, Phys. Rev. Lett. 118 (2017) 221802 [arXiv:1701.05404] [INSPIRE].
  105. [105]
    BESIII collaboration, Study of electromagnetic Dalitz decays χ cJ → μ + μ J/ψ, Phys. Rev. D 99 (2019) 051101 [arXiv:1901.06627] [INSPIRE].
  106. [106]
    LHCb collaboration, χc1 and χc2 Resonance Parameters with the Decays χ c1,c2 → J/ψμ + μ , Phys. Rev. Lett. 119 (2017) 221801 [arXiv:1709.04247] [INSPIRE].
  107. [107]
    M. Misiak, Theory of radiative B decays, in B physics and CP-violation. Proceedings of 3rd International Conference, Taipei Taiwan (1999), pg. 210 [hep-ph/0002007] [INSPIRE].
  108. [108]
    Belle collaboration, Measurement of the lepton forward-backward asymmetry in B → X s + decays with a sum of exclusive modes, Phys. Rev. D 93 (2016) 032008 [arXiv:1402.7134] [INSPIRE].
  109. [109]
    Belle collaboration, Improved measurement of the electroweak penguin process B → Xs l + l , Phys. Rev. D 72 (2005) 092005 [hep-ex/0503044] [INSPIRE].
  110. [110]
    BaBar collaboration, Measurement of the B → X s l + l branching fraction and search for direct CP-violation from a sum of exclusive final states, Phys. Rev. Lett. 112 (2014) 211802 [arXiv:1312.5364] [INSPIRE].
  111. [111]
    LHCb collaboration, Measurement of the η c (1S) production cross-section in proton-proton collisions via the decay η c (1S) → p \( \overline{p} \), Eur. Phys. J. C 75 (2015) 311 [arXiv:1409.3612] [INSPIRE].
  112. [112]
    LHCb collaboration, Study of charmonium production in b-hadron decays and first evidence for the decay B 0 → ϕϕϕ, Eur. Phys. J. C 77 (2017) 609 [arXiv:1706.07013] [INSPIRE].
  113. [113]
    Y. Fan, J.-Z. Li, C. Meng and K.-T. Chao, B-meson Semi-inclusive Decay to 2+ Charmonium in NRQCD and X(3872), Phys. Rev. D 85 (2012) 034032 [arXiv:1112.3625] [INSPIRE].ADSGoogle Scholar
  114. [114]
    L.G. Landsberg, Electromagnetic Decays of Light Mesons, Phys. Rept. 128 (1985) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    CLEO collaboration, Measurements of inclusive B → ψ production, Phys. Rev. Lett. 89 (2002) 282001 [hep-ex/0207059] [INSPIRE].
  116. [116]
    BaBar collaboration, Study of inclusive production of charmonium mesons in B decay, Phys. Rev. D 67 (2003) 032002 [hep-ex/0207097] [INSPIRE].
  117. [117]
    S. Fleming, O.F. Hernandez, I. Maksymyk and H. Nadeau, NRQCD matrix elements in polarization of J/Psi produced from b decay, Phys. Rev. D 55 (1997) 4098 [hep-ph/9608413] [INSPIRE].
  118. [118]
    CKMfitter Group collaboration, CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
  119. [119]
    Heavy Flavor Averaging Group collaboration, Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  120. [120]
    C. Schwanda, Determination of |V cb | from Inclusive Decays B → X c £ν using a Global Fit, in 7th International Workshop on the CKM Unitarity Triangle (CKM 2012) Cincinnati, Ohio, USA, September 28-October 2, 2012, 2013, arXiv:1302.0294 [INSPIRE].
  121. [121]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  122. [122]
    A. Alberti, P. Gambino, K.J. Healey and S. Nandi, Precision Determination of the Cabibbo-Kobayashi-Maskawa Element V cb , Phys. Rev. Lett. 114 (2015) 061802 [arXiv:1411.6560] [INSPIRE].Google Scholar
  123. [123]
    M. Gremm and A. Kapustin, Order \( 1/{m}_b^3 \) corrections to B → X ℓν decay and their implication for the measurement of \( \overline{\Lambda} \) and λ1 , Phys. Rev. D 55 (1997) 6924 [hep-ph/9603448] [INSPIRE].
  124. [124]
    I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, Sum rules for heavy flavor transitions in the SV limit, Phys. Rev. D 52 (1995) 196 [hep-ph/9405410] [INSPIRE].
  125. [125]
    I.I.Y. Bigi, M.A. Shifman and N. Uraltsev, Aspects of heavy quark theory, Ann. Rev. Nucl. Part. Sci. 47 (1997) 591 [hep-ph/9703290] [INSPIRE].
  126. [126]
    I.I.Y. Bigi, M.A. Shifman, N. Uraltsev and A.I. Vainshtein, High power n of m(b) in beauty widths and N = 5 → ∞ limit, Phys. Rev. D 56 (1997) 4017 [hep-ph/9704245] [INSPIRE].
  127. [127]
    P. Gambino and N. Uraltsev, Moments of semileptonic B decay distributions in the 1/m(b) expansion, Eur. Phys. J. C 34 (2004) 181 [hep-ph/0401063] [INSPIRE].
  128. [128]
    P. Gambino, P. Giordano, G. Ossola and N. Uraltsev, Inclusive semileptonic B decays and the determination of |V (ub)|, JHEP 10 (2007) 058 [arXiv:0707.2493] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    N. Uraltsev, On the chromomagnetic expectation value \( {\mu}_G^2 \) and higher power corrections in heavy flavor mesons, Phys. Lett. B 545 (2002) 337 [hep-ph/0111166] [INSPIRE].
  130. [130]
    CLEO collaboration, Measurement of absolute branching fractions of inclusive semileptonic decays of charm and charmed-strange mesons, Phys. Rev. D 81 (2010) 052007 [arXiv:0912.4232] [INSPIRE].
  131. [131]
    M. Benzke, S.J. Lee, M. Neubert and G. Paz, Long-Distance Dominance of the CP Asymmetry in B → X s,d + γ Decays, Phys. Rev. Lett. 106 (2011) 141801 [arXiv:1012.3167] [INSPIRE].
  132. [132]
    D.J. Broadhurst, J. Fleischer and O.V. Tarasov, Two loop two point functions with masses: Asymptotic expansions and Taylor series, in any dimension, Z. Phys. C 60 (1993) 287 [hep-ph/9304303] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Tobias Huber
    • 1
  • Tobias Hurth
    • 2
  • Jack Jenkins
    • 3
  • Enrico Lunghi
    • 3
  • Qin Qin
    • 1
    Email author
  • K. Keri Vos
    • 1
  1. 1.Theoretische Physik 1, Naturwissenschaftlich-Technische FakultätUniversität SiegenSiegenGermany
  2. 2.PRISMA+ Cluster of Excellence and Institute for Physics (THEP)Johannes Gutenberg UniversityMainzGermany
  3. 3.Physics DepartmentIndiana UniversityBloomingtonU.S.A.

Personalised recommendations