Journal of High Energy Physics

, 2019:224 | Cite as

Asymptotic symmetries of Maxwell theory in arbitrary dimensions at spatial infinity

  • Erfan EsmaeiliEmail author
Open Access
Regular Article - Theoretical Physics


The asymptotic symmetry analysis of Maxwell theory at spatial infinity of Minkowski space with d ≥ 3 is performed. We revisit the action principle in de Sitter slicing and make it well-defined by an asymptotic gauge fixing. In consequence, the conserved charges are inferred directly by manipulating surface terms of the action. Remarkably, the antipodal condition on de Sitter space is imposed by demanding regularity of field strength at light cone for d ≥ 4. We also show how this condition reproduces and generalizes the parity conditions for inertial observers introduced in 3+1 formulations. The expression of the charge for two limiting cases is discussed: null infinity and inertial Minkowski observers. For the separately-treated 3d theory, the boundary conditions and charges are compared to null infinity results in the literature. We also compute the conserved charges for background isometries for d > 3.


Gauge Symmetry Field Theories in Higher Dimensions Global Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    G. Compère, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, Ph.D. thesis, Brussels U., Brussels, Belgium (2007) [arXiv:0708.3153] [INSPIRE].
  2. [2]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys.88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys.31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    I.M. Anderson and C.G. Torre, Asymptotic conservation laws in field theory, Phys. Rev. Lett.77 (1996) 4109 [hep-th/9608008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys.B 633 (2002) 3 [hep-th/0111246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Campoleoni, D. Francia and C. Heissenberg, Asymptotic symmetries and charges at null infinity: from low to high spins, EPJ Web Conf.191 (2018) 06011 [arXiv:1808.01542] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    A. Campoleoni, D. Francia and C. Heissenberg, Asymptotic charges at null infinity in any dimension, Universe4 (2018) 47 [arXiv:1712.09591] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Kapec, V. Lysov and A. Strominger, Asymptotic symmetries of massless QED in even dimensions, Adv. Theor. Math. Phys.21 (2017) 1747 [arXiv:1412.2763] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    G. Satishchandran and R.M. Wald, Asymptotic behavior of massless fields and the memory effect, Phys. Rev.D 99 (2019) 084007 [arXiv:1901.05942] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    V. Hosseinzadeh, A. Seraj and M.M. Sheikh-Jabbari, Soft charges and electric-magnetic duality, JHEP08 (2018) 102 [arXiv:1806.01901] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    H. Hirai and S. Sugishita, Conservation laws from asymptotic symmetry and subleading charges in QED, JHEP07 (2018) 122 [arXiv:1805.05651] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Seraj, Multipole charge conservation and implications on electromagnetic radiation, JHEP06 (2017) 080 [arXiv:1610.02870] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations, JHEP11 (2016) 012 [arXiv:1605.09677] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Campiglia and A. Laddha, Asymptotic charges in massless QED revisited: a view from spatial infinity, JHEP05 (2019) 207 [arXiv:1810.04619] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G. Barnich, P.-H. Lambert and P. Mao, Three-dimensional asymptotically flat Einstein-Maxwell theory, Class. Quant. Grav.32 (2015) 245001 [arXiv:1503.00856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP11 (2017) 168 [arXiv:1703.07884] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Henneaux and C. Troessaert, Asymptotic symmetries of electromagnetism at spatial infinity, JHEP05 (2018) 137 [arXiv:1803.10194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    K. Prabhu, Conservation of asymptotic charges from past to future null infinity: Maxwell fields, JHEP10 (2018) 113 [arXiv:1808.07863] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H. Afshar, E. Esmaeili and M.M. Sheikh-Jabbari, Asymptotic symmetries in p-form theories, JHEP05 (2018) 042 [arXiv:1801.07752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Marolf, Chern-Simons terms and the three notions of charge, in Quantization, gauge theory and strings. Proceedings, International Conference dedicated to the memory of professor Efim Fradkin, Moscow, Russia, 5–10 June 2000, pg. 312 [hep-th/0006117] [INSPIRE].
  24. [24]
    R.B. Mann, D. Marolf and A. Virmani, Covariant counterterms and conserved charges in asymptotically flat spacetimes, Class. Quant. Grav.23 (2006) 6357 [gr-qc/0607041] [INSPIRE].
  25. [25]
    K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida, Holographic complexity equals which action?, JHEP02 (2019) 160 [arXiv:1901.00014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS2 black holes, JHEP11 (2008) 052 [arXiv:0809.4264] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev.D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    A. Ashtekar and J.D. Romano, Spatial infinity as a boundary of space-time, Class. Quant. Grav.9 (1992) 1069 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Donnay, G. Giribet, H.A. González and A. Puhm, Black hole memory effect, Phys. Rev.D 98 (2018) 124016 [arXiv:1809.07266] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    G. Compère and A. Fiorucci, Asymptotically flat spacetimes with BMS3 symmetry, Class. Quant. Grav.34 (2017) 204002 [arXiv:1705.06217] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.M. Wald, On identically closed forms locally constructed from a field, J. Math. Phys.31 (1990) 2378.ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Strominger, The dS/CFT correspondence, JHEP10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    L. Freidel and D. Pranzetti, Electromagnetic duality and central charge, Phys. Rev.D 98 (2018) 116008 [arXiv:1806.03161] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations