Advertisement

Journal of High Energy Physics

, 2019:219 | Cite as

Causal propagation of constraints in bimetric relativity in standard 3+1 form

  • Mikica KocicEmail author
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

The goal of this work was to investigate the propagation of the constraints in the ghost-free bimetric theory where the evolution equations are in standard 3+1 form. It is established that the constraints evolve according to a first-order symmetric hyperbolic system whose characteristic cone consists of the null cones of the two metrics. Consequently, the constraint evolution equations are well-posed, and the constraints stably propagate.

Keywords

Classical Theories of Gravity Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.F. Hassan and R.A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S.F. Hassan and R.A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost in Massive Gravity and Bimetric Gravity, JHEP04 (2012) 123 [arXiv:1111.2070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.F. Hassan and M. Kocic, On the local structure of spacetime in ghost-free bimetric theory and massive gravity, JHEP05 (2018) 099 [arXiv:1706.07806] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S.F. Hassan and A. Lundkvist, Analysis of constraints and their algebra in bimetric theory, JHEP08 (2018) 182 [arXiv:1802.07267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Kocic, Geometric mean of bimetric spacetimes, arXiv:1803.09752 [INSPIRE].
  6. [6]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev.D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.F. Hassan and R.A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity, Phys. Rev. Lett.108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Hadamard, Sur les Problémes aux Dérivées Partielles et Leur Signification Physique, Princeton Univ. Bull.13 (1902) 49.Google Scholar
  10. [10]
    J.W. York Jr., Kinematics and Dynamics of General Relativity, pp. 83–126 [INSPIRE].
  11. [11]
    S. Frittelli, Note on the propagation of the constraints in standard (3+1) general relativity, Phys. Rev.D 55 (1997) 5992 [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S.F. Hassan and R.A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP07 (2011) 009 [arXiv:1103.6055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I.G. Macdonald, Symmetric functions and orthogonal polynomials, AMS (1998).Google Scholar
  14. [14]
    P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity, JHEP09 (2005) 003 [hep-th/0505147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, On Consistent Theories of Massive Spin-2 Fields Coupled to Gravity, JHEP05 (2013) 086 [arXiv:1208.1515] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys.A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Particular Solutions in Bimetric Theory and Their Implications, Int. J. Mod. Phys.D 23 (2014) 1443002 [arXiv:1407.2772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    T. Damour and I.I. Kogan, Effective Lagrangians and universality classes of nonlinear bigravity, Phys. Rev.D 66 (2002) 104024 [hep-th/0206042] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  20. [20]
    É. Gourgoulhon, 3+1 Formalism in General Relativity: Bases of Numerical Relativity, Lecture Notes in Physics, Springer Berlin Heidelberg (2012).CrossRefGoogle Scholar
  21. [21]
    M. Alcubierre, Introduction to 3+1 Numerical Relativity, International Series of Monographs on Physics, Oxford University Press, Oxford (2012).zbMATHGoogle Scholar
  22. [22]
    M. Shibata, Numerical Relativity, 100 years of general relativity, World Scientific Publishng Company Pte. Limited (2015).Google Scholar
  23. [23]
    C. Bona, C. Palenzuela-Luque and C. Bona-Casas, Elements of Numerical Relativity and Relativistic Hydrodynamics: From Einstein’s Equations to Astrophysical Simulations, Lecture Notes in Physics, Springer Berlin Heidelberg (2009).CrossRefGoogle Scholar
  24. [24]
    M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev.D 52 (1995) 5428 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev.116 (1959) 1322 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Anderson and J.W. York Jr., Hamiltonian time evolution for general relativity, Phys. Rev. Lett.81 (1998) 1154 [gr-qc/9807041] [INSPIRE].
  27. [27]
    M. Kocic, A. Lundkvist and F. Torsello, On the ratio of lapses in bimetric relativity, arXiv:1903.09646 [INSPIRE].
  28. [28]
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Methods of Mathematical Physics, vol. 2, Interscience Publishers (1962).Google Scholar
  29. [29]
    T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer, Cambridge University Press (2010).Google Scholar
  30. [30]
    R. Geroch, Faster Than Light?, AMS/IP Stud. Adv. Math.49 (2011) 59 [arXiv:1005.1614] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    P. Lax, Hyperbolic Partial Differential Equations, Courant Lecture Notes in Mathematics, American Mathematical Society (2006).Google Scholar
  32. [32]
    J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, American Mathematical Society (2012).Google Scholar
  33. [33]
    K. Izumi and Y.C. Ong, An analysis of characteristics in nonlinear massive gravity, Class. Quant. Grav.30 (2013) 184008 [arXiv:1304.0211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality Constraints on Massive Gravity, Phys. Rev.D 96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Hinterbichler, A. Joyce and R.A. Rosen, Eikonal scattering and asymptotic superluminality of massless higher spin fields, Phys. Rev.D 97 (2018) 125019 [arXiv:1712.10021] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    J. Bonifacio, K. Hinterbichler, A. Joyce and R.A. Rosen, Massive and Massless Spin-2 Scattering and Asymptotic Superluminality, JHEP06 (2018) 075 [arXiv:1712.10020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    K. Hinterbichler, A. Joyce and R.A. Rosen, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP03 (2018) 051 [arXiv:1708.05716] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Düll, F.P. Schuller, N. Stritzelberger and F. Wolz, Gravitational closure of matter field equations, Phys. Rev.D 97 (2018) 084036 [arXiv:1611.08878] [INSPIRE].
  40. [40]
    F.P. Schuller and C. Witte, How quantizable matter gravitates: A practitioner’s guide, Phys. Rev.D 89 (2014) 104061 [arXiv:1402.6548] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Frittelli and O.A. Reula, First order symmetric hyperbolic Einstein equations with arbitrary fixed gauge, Phys. Rev. Lett.76 (1996) 4667 [gr-qc/9605005] [INSPIRE].
  42. [42]
    A. Anderson and J.W. York Jr., Fixing Einstein’s equations, Phys. Rev. Lett.82 (1999) 4384 [gr-qc/9901021] [INSPIRE].
  43. [43]
    L.E. Kidder, M.A. Scheel and S.A. Teukolsky, Extending the lifetime of 3-D black hole computations with a new hyperbolic system of evolution equations, Phys. Rev.D 64 (2001) 064017 [gr-qc/0105031] [INSPIRE].
  44. [44]
    A. Rendall, Partial differential equations in general relativity, Oxford Graduate Texts in Mathematics, Oxford University Press (2008).Google Scholar
  45. [45]
    H. Friedrich and A.D. Rendall, The Cauchy problem for the Einstein equations, Lect. Notes Phys.540 (2000) 127 [gr-qc/0002074] [INSPIRE].
  46. [46]
    H.-a. Shinkai and G. Yoneda, Reformulating the Einstein equations for stable numerical simulations, gr-qc/0209111 [INSPIRE].
  47. [47]
    T.W. Baumgarte and S.L. Shapiro, On the numerical integration of Einstein’s field equations, Phys. Rev.D 59 (1999) 024007 [gr-qc/9810065] [INSPIRE].
  48. [48]
    F. Loffler et al., The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics, Class. Quant. Grav.29 (2012) 115001 [arXiv:1111.3344] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics & The Oskar Klein CentreStockholm UniversityStockholmSweden

Personalised recommendations