Advertisement

Journal of High Energy Physics

, 2019:218 | Cite as

Hydrodynamics of broken global symmetries in the bulk

  • Aristomenis DonosEmail author
  • Daniel Martin
  • Christiana Pantelidou
  • Vaios Ziogas
Open Access
Regular Article - Theoretical Physics
  • 33 Downloads

Abstract

We consider holographic theories at finite temperature in which a continuous global symmetry in the bulk is spontaneously broken. We study the linear response of operators in a regime which is dual to time dependent, long wavelength deformations of solutions generated by the symmetry. By computing the boundary theory retarded Green’s function we show the existence of a gapless mode with a diffusive dispersion relation. The diffusive character of the mode is compatible with the absence of a conserved charge from the field theory point of view. We give an analytic expression for the corresponding diffusion constant in terms of thermodynamic data and a new transport coefficient σb which is fixed by the black hole horizon data. After adding a perturbative source on the boundary, we compute the resulting gap δωg as a simple function of σb and of data of the thermal state.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  4. [4]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP11 (2009) 015 [arXiv:0908.3677] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev.D 80 (2009) 105007 [arXiv:0908.1972] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  9. [9]
    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].
  10. [10]
    D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev.D 82 (2010) 066008 [arXiv:1005.1973] [INSPIRE].
  11. [11]
    A. Donos and C. Pantelidou, Holographic transport and density waves, JHEP05 (2019) 079 [arXiv:1903.05114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, arXiv:1906.03132 [INSPIRE].
  13. [13]
    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Diffusion and universal relaxation of holographic phonons, arXiv:1904.11445 [INSPIRE].
  14. [14]
    R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum critical metals, JHEP10 (2015) 112 [arXiv:1507.07137] [INSPIRE].
  15. [15]
    L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic Phonons, Phys. Rev. Lett.120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].
  16. [16]
    L. Alberte, M. Ammon, M. Baggioli, A. Jiménez and O. Pujolàs, Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE].
  17. [17]
    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, A holographic strange metal with slowly fluctuating translational order, arXiv:1812.08118 [INSPIRE].
  18. [18]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Donos, J.P. Gauntlett and V. Ziogas, Diffusion for Holographic Lattices, JHEP03 (2018) 056 [arXiv:1710.04221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
  22. [22]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys.11 (2015) 54 [arXiv:1405.3651] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE].
  26. [26]
    A. Donos, J.P. Gauntlett and V. Ziogas, Diffusion in inhomogeneous media, Phys. Rev.D 96 (2017) 125003 [arXiv:1708.05412] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    K.B. Lyons, R.N. Bhatt, T.J. Negran and H.J. Guggenheim, Incommensurate structural phase transition in bamnf4: Light scattering from phasons, Phys. Rev.B 25 (1982) 1791.ADSCrossRefGoogle Scholar
  28. [28]
    R. Zeyher and W. Finger, Phason dynamics of incommensurate crystals, Phys. Rev. Lett.49 (1982) 1833.ADSCrossRefGoogle Scholar
  29. [29]
    S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett.115 (2015) 221601 [arXiv:1507.00003] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Blake, Universal Diffusion in Incoherent Black Holes, Phys. Rev.D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Centre for Particle Theory and Department of Mathematical SciencesDurham UniversityDurhamU.K.
  2. 2.Shanghai Center for Complex Physics, School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations