Journal of High Energy Physics

, 2019:207 | Cite as

Thermodynamic description and quasinormal modes of adS black holes in Born-lnfeld massive gravity with a non-abelian hair

  • Seyed Hossein HendiEmail author
  • Mehrab Momennia
Open Access
Regular Article - Theoretical Physics


We construct a new class of asymptotically (a)dS black hole solutions of Einstein-Yang-Mills massive gravity in the presence of Born-Infeld nonlinear electrody­ namics. The obtained solutions possess a Coulomb electric charge, massive term and a non-abelian hair as well. We calculate the conserved and thermodynamic quantities, and investigate the validity of the first law of thermodynamics. Also, we investigate thermal stability conditions by using the sign of heat capacity through canonical ensemble. Next, we consider the cosmological constant as a thermodynamical pressure and study the van der Waals like phase transition of black holes in the extended phase space thermodynamics. Our results indicate the existence of a phase transition which is affected by the parameters of theory. Finally, we consider a massless scalar perturbation in the background of asymptotically adS solutions and calculate the quasinormal modes by employing the pseu­ dospectral method. The imaginary part of quasinormal frequencies is the time scale of a thermal state (in the conformal field theory) for the approach to thermal equilibrium.


Black Holes Classical Theories of Gravity Spacetime Singularities 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. 1.
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
  2. 2.
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
  3. 3.
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
  4. 4.
    S.F. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].
  5. 5.
    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].
  6. 6.
    G. D'Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava and A.J. Tolley, Massive cosmologies, Phys. Rev. D 84 (2011) 124046 [arXiv:1108.5231] [INSPIRE].
  7. 7.
    A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].
  8. 8.
    A.E. Gümrükçüoğlu, K. Hinterbichler, C. Lin, S. Mukohyama and M. Trodden, Cosmological perturbations in extended massive gravity, Phys. Rev. D 88 (2013) 024023 [arXiv:1304 .0449] [INSPIRE].
  9. 9.
    G. D'Amico, G. Gabadadze, L. Hui and D. Pirtskhalava, On cosmological perturbations of quasidilaton, Class. Quant. Grav. 30 (2013) 184005 [arXiv:1304.0723] [INSPIRE].
  10. 10.
    T. Chullaphan, L. Tannukij and P. Wongjun, Extended DEI massive gravity with generalized fiducial metric, JHEP 06 (2015) 038 [arXiv:1502.08018] [INSPIRE].
  11. 11.
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  12. 12.
    H. Zhang and X.-Z. Li, Ghost free massive gravity with singular reference metrics, Phys. Rev. D 93 (2016) 124039 [arXiv:1510.03204] [INSPIRE].
  13. 13.
    R.-G. Cai, Y.-P. Hu, Q.-Y. Pan and Y.-1. Zhang, Thermodynamics of black holes in massive gravity, Phys. Rev. D 91 (2015) 024032 [arXiv:1409.2369] [INSPIRE].
  14. 14.
    S.H. Hendi, B. Eslam Panah and S. Panahiyan, Einstein-Born-Infeld-massive gravity: AdS-black hole solutions and their thermodynamical properties, JHEP 11 (2015) 157 [arXiv:1508.01311] [INSPIRE].
  15. 15.
    S.G. Ghosh, L. Tannukij and P. Wongjun, A class of black holes in dRGT massive gravity and their thermodynamical properties, Eur. Phys. J. C 76 (2016) 119 [arXiv:1506.07119] [INSPIRE].
  16. 16.
    S.H. Hendi, B. Eslam Panah and S. Panahiyan, Massive charged BTZ black holes in asymptotically (a)dS spacetimes, JHEP 05 (2016) 029 [arXiv:1604.00370] [INSPIRE].
  17. 17.
    S.H. Hendi, B. Eslam Panah, S. Panahiyan and M. Momennia, Magnetic brane solutions in Gauss-Bonnet-Maxwell massive gravity, Phys. Lett. B 772 (2017) 43 [INSPIRE].
  18. 18.
    S.H. Hendi, B. Eslam Panah, S. Panahiyan and M. Momennia, Three dimensional magnetic solutions in massive gravity with (non)linear field, Phys. Lett. B 775 (2017) 251 [arXiv:1704.00996] [INSPIRE].
  19. 19.
    J. Xu, L.-M. Cao and Y.-P. Hu, P- V criticality in the extended phase space of black holes in massive gravity, Phys. Rev. D 91 (2015) 124033 [arXiv:1506.03578] [INSPIRE].
  20. 20.
    S.H. Hendi, S. Panahiyan, B. Eslam Panah and M. Momennia, Phase transition of charged black holes in massive gravity through new methods, Annalen Phys. 528 (2016) 819 [arXiv:1506.07262] [INSPIRE].
  21. 21.
    S.H. Hendi, R.B. Mann, S. Panahiyan and B. Eslam Panah, Vander Waals like behavior of topological AdS black holes in massive gravity, Phys. Rev. D 95 (2017) 021501 [arXiv:1702.00432] [INSPIRE].
  22. 22.
    S.H. Hendi, B. Eslam Panah and S. Panahiyan, Topological charged black holes in massive gravity's rainbow and their thermodynamical analysis through various approaches, Phys. Lett. B 769 (2017) 191 [arXiv:1602.01832] [INSPIRE].
  23. 23.
    S.H. Hendi, M. Momennia, B. Eslam Panah and S. Panahiyan, Nonsingular universe in massive gravity's rainbow, Phys. Dark Univ . 16 (2017) 26 [arXiv:1705.01099] [INSPIRE].
  24. 24.
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].
  25. 25.
    M. Blake and D. Tong, Universal resistivity from holographic massive gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
  26. 26.
    L. Alberte, M. Baggioli, A. Khmelnitsky and 0. Pujolas, Solid holography and massive gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].
  27. 27.
    X.-X. Zeng, H. Zhang and 1.-F. Li, Phase transition of holographic entanglement entropy in massive gravity, Phys. Lett. B 756 (2016) 170 [arXiv:1511.00383] [INSPIRE].
  28. 28.
    A. Dehyadegari, M. Kord Zangeneh and A. Sheykhi, Holographic conductivity in the massive gravity with power-law Maxwell field, Phys. Lett. B 773 (2017) 344 [arXiv:1703.00975] [INSPIRE].
  29. 29.
    W. Heisenberg and H. Euler, Consequences of Dirac's theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].
  30. 30.
    H. Yajima and T. Tamaki, Black hole solutions in Euler-Heisenberg theory, Phys. Rev. D 63 (2001) 064007 [gr-qc/0005016] [INSPIRE].
  31. 31.
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    V.A. De Lorenci and M.A. Souza, Electromagnetic wave propagation inside a material medium: an effective geometry interpretation, Phys. Lett. B 512 (2001) 417 [gr-qc/0102022] [INSPIRE].
  33. 33.
    V.A. De Lorenci and R. Klippert, Analog gravity from electrody namics in nonlinear media, Phys. Rev. D 65 (2002) 064027 [gr-qc/0107008] [INSPIRE].
  34. 34.
    M. Novello and E. Bittencourt, Gordon metric revisited, Phys. Rev. D 86 (2012) 124024 [arXiv:1211.5053] [INSPIRE].
  35. 35.
    M. Novello, S.E. Perez Bergliaffa, J. Salim, V. De Lorenci and R. Klippert, Analog black holes in flowing dielectrics, Class. Quant. Grav. 20 (2003) 859 [gr-qc/02010 61] [INSPIRE].
  36. 36.
    D.H. Delphenich, Nonlinear electrodynamics and QED, hep-th/0309108 [INSPIRE].
  37. 37.
    D.H. Delphenich, Nonlinear optical analogies in quantum electrodynamics, hep-th/0610088 [INSPIRE].
  38. 38.
    E. Ayon-Beato and A. Garcia, Nonsingular charged black hole solution for nonlinear source, Gen. Rel. Grav. 31 (1999) 629 [gr-qc /9911084] [INSPIRE].
  39. 39.
    E. Ayon-Beato and A. Garcia, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B 464 (1999) 25 [hep-th/9911174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    V.A. De Lorenci, R. Klippert , M. Novello and J.M. Salim, Nonlinear electrodynamics and FRW cosmology, Phys. Rev. D 65 (2002) 063501 [INSPIRE].
  41. 41.
    I. Dymnikova, Regular el ectrically charged structures in nonlinear electrody namics coupled to general relativity, Class. Quant. Grav. 21 (2004) 4417 [gr-qc/0407072] [INSPIRE].
  42. 42.
    C. Corda and H.J. Mosquera Cuesta, Removing black-hole singularities with nonlinear electrodynamics, Mod. Phys. Lett. A 25 (2010) 2423 [arXiv:0905.3298] [INSPIRE].
  43. 43.
    C. Corda and H.J. Mosquera Cuesta, Inflation from R 2 gravity: a new approach using nonlinear electrodynamics, Astropart. Phys. 34 (2011) 587 [arXiv:1011.4801] [INSPIRE].
  44. 44.
    H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the gravitational redshift of pulsars, Mon. Not. Roy. Astron. Soc. 354 (2004) L55 [astro-ph/0403045] [INSPIRE].
  45. 45.
    H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the surface redshift of pulsars, Astrophys. J. 608 (2004) 925 [astro-ph/0307513] [INSPIRE].
  46. 46.
    Z. Bialynicka-Birula and I. Bialynicki-Birula, Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field, Phys. Rev. D 2 (1970) 2341 [INSPIRE].ADSGoogle Scholar
  47. 47.
    M. Born, Quantum theory of the electromagnetic field, Proc. Roy. Soc. Land. A 143 (1934) 410 [INSPIRE].ADSCrossRefGoogle Scholar
  48. 48.
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Land. A 144 (1934) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  49. 49.
    E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 163 (1985) 123 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    R.R. Metsaev, M. Rakhmanov and A.A. Tseytlin, The Born-Infeld action as the e ffectiv e action in the open superstring theory, Phys. Lett. B 193 (1987) 207 [INSPIRE].ADSCrossRefGoogle Scholar
  51. 51.
    E. Bergshoeff, E. Sezgin, C.N. Pope and P.K. Townsend, The Born-Infeld action from conformal invariance of the open superstring, Phys. Lett. B 188 (1987) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  52. 52.
    C.G. Callan Jr., C. Lovelace, C.R. Nappi and S.A. Yost, Loop corrections to superstring equations of motion, Nucl. Phys. B 308 (1988) 221 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    O.D. Andreev and A.A. Tseytlin, Partition function representation for the open superstring effective action: cancellation of Mobius infinities and derivative corrections to Born-Infeld Lagrangian, Nucl. Phys. B 311 (1988) 205 [I NSPIRE].
  54. 54.
    R.G. Leigh, Dirac-Born-Infeld action from Dirichlet a-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].ADSCrossRefGoogle Scholar
  55. 55.
    R.-G. Cai and Y.-W. Sun, Shear viscosity from AdS Born-Infeld black holes, JHEP 09 (2008) 115 [arXiv:0807.2377] [INSPIRE].
  56. 56.
    R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].
  57. 57.
    J. Jing and S. Chen, Holographic superconductors in the Born-Infeld electrodynamics, Phys. Lett. B 686 (2010) 68 [arXiv:1001.4227] [INSPIRE].
  58. 58.
    M.H. Dehghani, N. Alinejadi and S.H. Hendi, Topological black holes in Lovelock-Born-Infeld gravity, Phys. Rev. D 77 (2008) 104025 [arXiv:0802.2637] [INSPIRE].
  59. 59.
    M.H. Dehghani and S.H. Hendi, Taub-NUT/ bolt black holes in Gauss-Bonnet-Maxwell gravity, Phys. Rev . D 73 (2006) 084021 [hep-th/0602069] [INSPIRE].
  60. 60.
    M. Allaverdizadeh, S.H. Hendi, J.P.S. Lemos and A. Sheykhi, Extremal Myers-Perry black holes coupled to Born-Infeld electrodynamics in odd dimensions, Int. J. Mod. Phys. D 23 (2014) 1450032 [arXiv:1304.0836] [INSPIRE].
  61. [61I]
    D.-C. Zou, S.-J. Zhang and B. Wang, Critical behavior of Bor n-Infeld AdS black holes in the extended phase space thermodynamics, Phys. Rev. D 89 (2014) 044002 [arXiv:1311.7299] [INSPIRE].
  62. [62]
    S. Habib Mazharimousavi, M. Halilsoy and Z. Amirabi, New non-Abelian black hole solutions in Born-Infeld gravity, Phys. Rev. D 78 (2008) 064050 [arXiv:0806.4614] [INSPIRE].
  63. [63]
    W.A. Chemissany, M. de Roo and S. Panda, Thermodynamics of Born-Infeld black holes, Class. Quant. Grav. 25 (2008) 225009 [arXiv:0806.3348] [INSPIRE].
  64. [64]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and phase transitions in the Born-Infeld-anti-de Sitter black holes, Phys. Rev . D 78 (2008) 084002 [arXiv:0805.0187] [INSPIRE].
  65. [65]
    0. Miskovic and R. Olea, Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant, Phys. Rev. D 77 (2008) I24048 [arXiv:0802.2081] [INSPIRE].
  66. [66]
    S. Fernando, Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble, Phys. Rev. D 74 (2006) I04032 [hep-th/0608040] [INSPIRE].
  67. [67]
    R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) I24034 [hep-th/0410158] [INSPIRE].
  68. [68]
    M. Cataldo and A. Garcia, Three dimensional black hole coupled to the Born-Infeld electrodynamics, Phys. Lett. B 456 (I999) 28 [hep-th/9903257] [INSPIRE].
  69. [69]
    S.H. Hendi, S. Panahiyan, B. Eslam Panah and M. Momennia, Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow, Eur. Phys. J. C 76 (20I6) 150 [arXiv:1512.05192] [INSPIRE].
  70. [70]
    H.Q. Lu, L.M. Shen, P. Ji, G.F. Ji and N.J. Sun, The classical wormhole solution and wormhole wave function with a nonlinear Born-Infeld scalar field, Int. J. Theor. Phys. 42 (2003) 837 [gr-qc/0204013] [INSPIRE].
  71. [71]
    M.H. Dehghani and S.H. Hendi, Wormhole solutions in Gauss-Bonnet-Born-Infeld gravity, Gen. Rel. Grav. 41 (2009) I853 [arXiv:0903.4259] [INSPIRE].
  72. [72]
    E.F. Eiroa and G.F. Aguirre, Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory, Eur. Phys. J. C 72 (2012) 2240 [arXiv:1205.2685] [INSPIRE].
  73. [73]
    S.H. Hendi, Wormhole solutions in the presence of nonlinear Maxwell field, Adv. High Energy Phys. 2014 (2014) 697863 [arXiv:1405.6997] [INSPIRE].
  74. [74]
    S.H. Hendi, Rotating black branes in Brans-Dicke-Born-Infeld theory, J. Math. Phys. 49 (2008) 082501 [arXiv:0808.2347] [INSPIRE].
  75. [75]
    M.H. Dehghani, S.H. Hendi, A. Sheykhi and H. Rastegar Sedehi, Thermodynamics of rotating black branes in (n + I)-dimensional Einstein-Born-Infeld-dilaton gravity, JCAP 02 (2007) 020 [hep-th/0611288] [INSPIRE].
  76. [76]
    M.H. Dehghani and S.H. Hendi, Thermodynamics of rotating black branes in Gauss-Bonnet-Born-Infeld gravity, Int. J. Mod. Phys. D 16 (2007) I829 [hep-th/0611087] [INSPIRE].
  77. [77]
    M.H. Dehghani and H.R. Rastegar Sedehi, Thermodynamics of rotating black branes in (n+ I)-dimensional Einstein-Born-Infeld gravity, Phys. Rev. D 74 (2006) I24018 [hep-th/0610239] [INSPIRE].
  78. [78]
    S.H. Hendi, Rotating black string with nonlinear source, Phys. Rev. D 82 (2010) 064040 [arXiv:1008.5210] [INSPIRE].
  79. [79]
    V. Ferrari, L. Gualtieri, J.A. Pons and A. Stavridis, Rotational effects on the oscillation frequencies of newly born proto-neutron stars, Mon. Not. Roy. Astron. Soc. 350 (2004) 763 [astro-ph/0310896] [INSPIRE].
  80. [80]
    W. Yao and J. Jing, Holographic entanglement entropy in insulator/superconductor transition with Born-Infeld electrodynamics, JHEP 05 (2014) 058 [arXiv:1401.6505] [INSPIRE].
  81. [81]
    S. Gangopadhyay, Holographic superconductors in Born-Infeld electrodynamics and external magnetic field, Mod. Phys. Lett. A 29 (2014) 1450088 [arXiv:1311.4416] [INSPIRE].
  82. [82]
    J. Jing, L. Wang, Q. Pan and S. Chen, Holographic superconductors in Gauss-Bonnet gravity with Born-Infeld electrodynamics, Phys. Rev. D 83 (2011) 066010 [arXiv:1012.0644] [INSPIRE].
  83. [83]
    M. Zhang, D.-C. Zou and R.-H. Yue, Reentrant phase transitions and triple points of topological AdS black holes in Born-Infeld-massive gravity, Adv. High Energy Phys. 2017 (2017) 3819246 [arXiv:1707.04101] [INSPIRE].
  84. [84]
    P.B. Yasskin, Solutions for gravity coupled to massless gauge fields, Phys. Rev. D 12 (1975) 2212 [INSPIRE].ADSMathSciNetGoogle Scholar
  85. [85]
    S. Habib Mazharimousavi and M. Halilsoy, 5D black hole solution in Einstein-Yang-Mills-Gauss-Bonnet theory, Phys. Rev. D 76 (2007) 087501 [arXiv:0801.1562] [INSPIRE].
  86. [86]
    S. Habib Mazharimousavi and M. Halilsoy, Black holes in Einstein-Maxwell- Yang-Mills theory and their Gauss-Bonnet extensions, JCAP 12 (2008) 005 [arXiv:0801.2110] [INSPIRE].
  87. [87]
    S. Habib Mazharimousavi and M. Halilsoy, Higher dimensional Yang-Mills black holes in third order Lovelock gravity, Phys. Lett. B 665 (2008) 125 [arXiv:0801.1726] [INSPIRE].
  88. [88]
    S.H. Mazharimousavi and M. Halilsoy, Lovelock black holes with a power- Yang-Mills source, Phys. Lett. B 681 (2009) 190 [arXiv:0908.0308] [INSPIRE].
  89. [89]
    M. Wirschins, A. Sood and J. Kunz, Non-Abelian Einstein-Born-Infeld black holes, Phys. Rev. D 63 (2001) 084002 [hep-th/0004130] [INSPIRE].
  90. [90]
    E. Ayon-Beato and A. Garcia, The Bardeen model as a nonlinear magnetic monopole, Phys. Lett. B 493 (2000) 149 [gr-qc/0009077] [INSPIRE].
  91. [91]
    J.P.S. Lemos and V.T. Zanchin, Regular black holes: electrically charged solutions, Reissner-Nordstrom outside a de Sitter core, Phys. Rev. D 83 (2011) 124005 [arXiv:1104.4790] [INSPIRE].
  92. [92]
    S.V. Bolokhov, K.A. Bronnikov and M.V. Skvortsova, Magnetic black universes and wormholes with a phantom scalar, Class. Quant. Grav. 29 (2012) 245006 [arXiv:1208.4619] [INSPIRE].
  93. [93]
    M.-S. Ma, Magnetically charged regular black hole in a model of nonlinear electrodynamics, Annals Phys. 362 (2015) 529 [arXiv:1509.05580] [INSPIRE].
  94. [94]
    E. Winstanley, Existence of stable hairy black holes in SU(2) Einstein Yang-Mills theory with a negative cosmological constant, Class. Quant. Grav. 16 (1999) 1963 [gr-qc/9812064] [INSPIRE].
  95. [95]
    J. Bjoraker and Y. Hosotani, Stable monopole and dyon solutions in the Einstein- Yang-Mills theory in asymptotically anti-de Sitter space, Phys. Rev. Lett. 84 (2000) 1853 [gr-qc/9906091] [INSPIRE].
  96. [96]
    J. Bjoraker andY. Hosotani, Monopoles, dyons and black holes in the four-dimensional Einstein- Yang-Mills theory, Phys. Rev . D 62 (2000) 043513 [hep-th/0002098] [INSPIRE].
  97. [97]
    A.B. Balakin, J.P.S. Lemos and A.E. Zayats, Regular nonminimal magnetic black holes in spacetimes with a cosmological constant, Phys. Rev. D 93 (2016) 024008 [arXiv:1512.02653] [INSPIRE].
  98. [98]
    A.B. Balakin, J.P.S. Lemos and A.E. Zayats, Magnetic black holes and monopoles in a nonminimal Einstein- Yang-Mills theory with a cosmological constant: exact solutions, Phys. Rev. D 93 (2016) 084004 [arXiv:1603.02676] [INSPIRE].
  99. [99]
    A.B. Balakin, S.V. Sushkov and A.E. Zayats, Non-minimal Wu- Yang wormhole, Phys. Rev. D 75 (2007) 084042 [arXiv:0704.1224] [INSPIRE].
  100. [100]
    A.B. Balakin and A.E. Zayats, Dark energy fingerprints in the nonminimal Wu- Yang wormhole structure, Phys. Rev. D 90 (2014) 044049 [arXiv:1408.0862] [INSPIRE].
  101. [101]
    A.B. Balakin and A.E. Zayats, Non-minimal Wu- Yang monopole, Phys. Lett. B 644 (2007) 294 [gr-qc/0612019] [INSPIRE].
  102. [102]
    A.B. Balakin, H. Dehnen and A.E. Zayats, Non-minimal Einstein- Yang-Mills-Higgs theory: associated, color and color-acoustic metrics for the Wu- Yang monopole model, Phys. Rev. D 76 (2007) 124011 [arXiv:0710.5070] [INSPIRE].
  103. [103]
    S.H. Hendi and M. Momennia, AdS charged black holes in Einstein- Yang-Mills gravity's rainbow: thermal stability and P- V criticality, Phys. Lett. B 777 (2018) 222 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    G.V. Lavrelashvili and D. Maison, Regular and black hole solutions of Einstein Yang-Mills dilaton theory, Nucl. Phys. B 410 (1993) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    E.E. Donets and D.V. Galtsov, Stringy sphalerons and non-Abelian black holes, Phys. Lett. B 302 (1993) 411 [hep-th/9212153] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    P. Bizon, Saddle points of stringy action, Acta Phys. Polan. B 24 (1993) 1209 [gr-qc/9304040] [INSPIRE].
  107. [107]
    T. Torii and K.-I. Maeda, Black holes with non-Abelian hair and their thermodynamical properties, Phys. Rev. D 48 (1993) 1643 [INSPIRE].ADSGoogle Scholar
  108. [108]
    Y. Brihaye and E. Radu, Euclidean solutions in Einstein- Yang-Mills-dilaton theory, Phys. Lett. B 636 (2006) 212 [gr-qc /0602069] [INSPIRE].
  109. [109]
    E. Radu, Ya. Shnir and D.H. Tchrakian, Particle-like solutions to the Yang-Mills-dilaton system in d = 4 + 1 dimensions, Phys. Rev. D 75 (2007) 045003 [hep-th/0611270] [INSPIRE].
  110. [110]
    M.H. Dehghani and A. Bazrafshan, Topological black holes of Einstein- Yang-Mills dilaton gravity, Int. J. Mod. Phys. D 19 (2010) 293 [arXiv:1005.2387] [INSPIRE].
  111. [111]
    K. Meng and J. Li, Black hole solution of Gauss-Bonnet massive gravity coupled to Maxwell and Yang-Mills fields in five dimensions, EPL 116 (2016) 10005 [INSPIRE].
  112. [112]
    S. Fernando and D. Krug, Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [INSPIRE].
  113. [113]
    R. Arnowitt, S. Deser and C. Misner, Gravitation: an introduction to current research, L. Witten ed., Wiley, New York, NY, U.S.A. (1962).Google Scholar
  114. [114]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  115. [115]
    S.H. Hendi and M.H. Vahidinia, Extended phase space thermodynamics and P- V criticality of black holes with a nonlinear source, Phys. Rev. D 88 (2013) 084045 [arXiv:1212.6128] [INSPIRE].
  116. [116]
    D. Kubiznak and R.B. Mann, P- V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].
  117. [117]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
  118. [118]
    D. Mateos, String theory and quantum chromodynamics, Class. Quant. Grav. 24 (2007) S713 [arXiv:0709.1523] [INSPIRE].
  119. [119]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [INSPIRE].
  120. [120]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].
  121. [121]
    S.A. Hartnoll and C.P. Herzog, Ohm's law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].
  122. [122]
    S.A. Hart noll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
  123. [123]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].
  124. [124]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].
  125. [125]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].
  126. [126]
    A. Akhavan and M. Alishahiha, p-wave holographic insulator/superconductor phase transition, Phys. Rev. D 83 (2011) 086003 [arXiv:1011.6158] [INSPIRE].
  127. [127]
    J.P. Boyd, Chebyshev & Fourier spectral methods, Courier Dover Publications, U.S.A. (2001).Google Scholar
  128. [128]
    A. Jansen, Overdamped modes in Schwarzschild-de Sitter and a mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus 132 (2017) 546 [arXiv:1709.09178] [INSPIRE].
  129. [129]
    S. Hod, Hairy black holes and null circular geodesics, Phys. Rev. D 84 (2011) 124030 [arXiv:1112.3286] [INSPIRE].
  130. [130]
    Y.S. Myung and T. Moon, Hairy mass bound in the Einstein-Born-Infeld black hole, Phys. Rev. D 86 (2012) 084047 [arXiv:1201.1173] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Phymcs Department and Biruni Obsevatory, College of SciencesShiroz UniversityShirozIran
  2. 2.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaroghaIran

Personalised recommendations