Measurement of the inclusive isolated-photon cross section in pp collisions at \( \sqrt{s} \) = 13 TeV using 36 fb−1 of ATLAS data
- 91 Downloads
Abstract
The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb−1. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties.
Keywords
Hadron-Hadron scattering (experiments) Photon production QCDNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]T. Pietrycki and A. Szczurek, Photon-jet correlations in pp and pp̄ collisions, Phys. Rev.D 76 (2007) 034003 [arXiv:0704.2158] [INSPIRE].
- [2]Z. Belghobsi et al., Photon-jet correlations and constraints on fragmentation functions, Phys. Rev.D 79 (2009) 114024 [arXiv:0903.4834] [INSPIRE].
- [3]ATLAS collaboration, Measurement of the inclusive isolated prompt photons cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector using 4.6 fb −1 , Phys. Rev.D 89 (2014) 052004 [arXiv:1311.1440] [INSPIRE].
- [4]ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP08 (2016) 005 [arXiv:1605.03495] [INSPIRE].
- [5]ATLAS collaboration, Measurement of the cross section for inclusive isolated-photon production in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Phys. Lett.B 770 (2017) 473 [arXiv:1701.06882] [INSPIRE].
- [6]CMS collaboration, Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV, Phys. Rev.D 84 (2011) 052011 [arXiv:1108.2044] [INSPIRE].
- [7]CMS collaboration, Measurement of differential cross sections for inclusive isolated-photon and photon+jets production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 20 [arXiv:1807.00782] [INSPIRE].
- [8]D. d’Enterria and J. Rojo, Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data, Nucl. Phys.B 860 (2012) 311 [arXiv:1202.1762] [INSPIRE].
- [9]L. Carminati et al., Sensitivity of the LHC isolated-gamma+jet data to the parton distribution functions of the proton, EPL101 (2013) 61002 [arXiv:1212.5511] [INSPIRE].ADSCrossRefGoogle Scholar
- [10]J. Gao, L. Harland-Lang and J. Rojo, The structure of the proton in the LHC precision era, Phys. Rept.742 (2018) 1 [arXiv:1709.04922] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [11]J.M. Campbell, J. Rojo, E. Slade and C. Williams, Direct photon production and PDF fits reloaded, Eur. Phys. J.C 78 (2018) 470 [arXiv:1802.03021] [INSPIRE].
- [12]A.V. Lipatov and M.A. Malyshev, Reconsideration of the inclusive prompt photon production at the LHC with k T-factorization, Phys. Rev.D 94 (2016) 034020 [arXiv:1606.02696] [INSPIRE].
- [13]M. Klasen, C. Klein-Bösing and H. Poppenborg, Prompt photon production and photon-jet correlations at the LHC, JHEP03 (2018) 081 [arXiv:1709.04154] [INSPIRE].ADSCrossRefGoogle Scholar
- [14]M.D. Schwartz, Precision direct photon spectra at high energy and comparison to the 8 TeV ATLAS data, JHEP09 (2016) 005 [arXiv:1606.02313] [INSPIRE].ADSCrossRefGoogle Scholar
- [15]J.M. Campbell, R.K. Ellis and C. Williams, Direct photon production at next-to–next-to-leading order, Phys. Rev. Lett.118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].ADSCrossRefGoogle Scholar
- [16]X. Chen et al., Isolated photon and photon+jet production at NNLO QCD accuracy, arXiv:1904.01044.
- [17]X. Chen et al., Isolated photon and photon+jet production at NNLO QCD accuracy and the ratio \( {R}_{13/8}^{\gamma } \), arXiv:1905.08577.
- [18]G. Brooijmans et al., Les Houches 2017: physics at TeV colliders new physics working group report, FERMILAB-CONF-17-664 (2017).
- [19]S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP05 (2002) 028 [hep-ph/0204023] [INSPIRE].
- [20]P. Aurenche et al., A new critical study of photon production in hadronic collisions, Phys. Rev.D 73 (2006) 094007 [hep-ph/0602133] [INSPIRE].
- [21]T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
- [22]ATLAS collaboration, The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST3 S08003 [INSPIRE].
- [23]ATLAS collaboration, ATLAS Insertable B-Layer technical design report, CERN-LHCC-2010-013 (2010).
- [24]B. Abbott et al., Production and Integration of the ATLAS Insertable B-Layer, 2018 JINST13 T05008 [arXiv:1803.00844] [INSPIRE].
- [25]ATLAS collaboration, Performance of the ATLAS Trigger System in 2015, Eur. Phys. J.C 77 (2017) 317 [arXiv:1611.09661] [INSPIRE].
- [26]ATLAS collaboration, Luminosity determination in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector at the LHC, ATLAS-CONF-2019-021 (2019).
- [27]G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, 2018 JINST13 P07017 [INSPIRE].
- [28]GEANT4 collaboration, GEANT4 — A simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [INSPIRE].
- [29]ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J.C 70 (2010) 823 [arXiv:1005.4568] [INSPIRE].
- [30]T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
- [31]B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept.97 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
- [32]J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J.C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].
- [33]R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys.B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
- [34]H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev.D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
- [35]ATLAS collaboration, ATLAS Run 1 PYTHIA8 tunes, ATL-PHYS-PUB-2014-021 (2014). [36] S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP05 (2009) 053 [arXiv:0903.1219] [INSPIRE].
- [37]S. Frixione, Isolated photons in perturbative QCD, Phys. Lett.B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
- [38]T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSCrossRefGoogle Scholar
- [39]F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP02 (2002) 044 [hep-ph/0109036] [INSPIRE].
- [40]F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
- [41]S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
- [42]S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSCrossRefGoogle Scholar
- [43]NNPDF collaboration, Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
- [44]ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003 (2012).
- [45]A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].
- [46]ATLAS collaboration, Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016, Eur. Phys. J.C 79 (2019) 205 [arXiv:1810.05087] [INSPIRE].
- [47]ATLAS collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J.C 77 (2017) 490 [arXiv:1603.02934] [INSPIRE].
- [48]ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev.D 83 (2011) 052005 [arXiv:1012.4389] [INSPIRE].
- [49]ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross-section in pp collisions at \( \sqrt{s} \) = 7 TeV using 35 pb −1of ATLAS data, Phys. Lett.B 706 (2011) 150 [arXiv:1108.0253] [INSPIRE].
- [50]M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
- [51]M. Cacciari, G.P. Salam and S. Sapeta, On the characterisation of the underlying event, JHEP04 (2010) 065 [arXiv:0912.4926] [INSPIRE].ADSCrossRefGoogle Scholar
- [52]ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J.C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE].
- [53]ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data, 2019 JINST14 P03017 [arXiv:1812.03848] [INSPIRE].
- [54]G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth.A 362 (1995) 487 [INSPIRE].
- [55]G. Bohm and G. Zech, Introduction to statistics and data analysis for physicists, https://doi.org/10.3204/DESY-BOOK/statistics, Deutsches Elektronen-Synchrotron, Hamburg, Germany (2014).
- [56]ATLAS collaboration, Measurement of the inelastic proton-proton cross section at \( \sqrt{s} \) = 13 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett.117 (2016) 182002 [arXiv:1606.02625] [INSPIRE].
- [57]L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].
- [58]L. Bourhis, M. Fontannaz and J.P. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J.C 2 (1998) 529 [hep-ph/9704447] [INSPIRE].
- [59]S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
- [60]S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, α sand heavy-quark masses for LHC Run II, Phys. Rev.D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].
- [61]H1 and ZEUS collaborations, Combination of measurements of inclusive deep inelastic e ±p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J.C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].
- [62]F. Siegert, A practical guide to event generation for prompt photon production with Sherpa, J. Phys.G 44 (2017) 044007 [arXiv:1611.07226] [INSPIRE].
- [63]R.D. Ball et al., Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
- [64]S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP01 (2010) 060 [arXiv:0911.2329] [INSPIRE].
- [65]T. Becher and X. Garcia i Tormo, Addendum: electroweak Sudakov effects in W , Z and γ production at large transverse momentum, Phys. Rev.D 92 (2015) 073011 [arXiv:1509.01961] [INSPIRE].
- [66]J. Pumplin et al., Uncertainties of predictions from parton distribution functions. 2. The Hessian method, Phys. Rev.D 65 (2001) 014013 [hep-ph/0101032] [INSPIRE].
- [67]L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Uncertainties on αS in the MMHT2014 global PDF analysis and implications for SM predictions, Eur. Phys. J.C 75 (2015) 435 [arXiv:1506.05682] [INSPIRE].
- [68]ATLAS collaboration, ATLAS computing acknowledgements, ATL-GEN-PUB-2016-002 (2016).