Journal of High Energy Physics

, 2019:200 | Cite as

Kähler moduli stabilization from ten dimensions

  • Iosif Bena
  • Mariana Graña
  • Nicolas KovenskyEmail author
  • Ander Retolaza
Open Access
Regular Article - Theoretical Physics


We describe the back-reaction of gaugino condensates in supersymmetric AdS4 Type II String Theory compactifications with fluxes. We use generalized complex geometry to capture the modification of the ten-dimensional supersymmetry equations and show that the cosmological constant prevents the cycle wrapped by the branes with gaugino condensation from shrinking to zero size. Thus, unlike in ordinary geometric transitions in flat space, the volume of this cycle remains finite. For D7 branes with gaugino condensation, this gives a ten-dimensional account of Kähler moduli stabilization. Furthermore, by matching the ten-dimensional supergravity solutions near and far from the cycle wrapped by the D7 branes, we find a relation between the size of this cycle and the cosmological constant. This relation agrees with the supersymmetric AdS vacuum condition obtained by KKLT using effective field theory.


Flux compactifications Nonperturbative Effects Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  2. [2]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    M. Graña and J. Polchinski, Supersymmetric three form flux perturbations on AdS 5, Phys. Rev.D 63 (2001) 026001 [hep-th/0009211] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP01 (2008) 052 [arXiv:0708.1873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, (Anti-)Brane backreaction beyond perturbation theory, JHEP02 (2012) 025 [arXiv:1111.2605] [INSPIRE].
  7. [7]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Giant Tachyons in the Landscape, JHEP02 (2015) 146 [arXiv:1410.7776] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev.D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    F.F. Gautason, V. Van Hemelryck and T. Van Riet, The Tension between 10D Supergravity and dS Uplifts, Fortsch. Phys.67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    I. Bena, E. Dudas, M. Graña and S. Lüst, Uplifting Runaways, Fortsch. Phys.67 (2019) 1800100 [arXiv:1809.06861] [INSPIRE].
  11. [11]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  12. [12]
    S. Sethi, Supersymmetry Breaking by Fluxes, JHEP10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    R. Blumenhagen, D. Kläwer and L. Schlechter, Swampland Variations on a Theme by KKLT, JHEP05 (2019) 152 [arXiv:1902.07724] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys.B 474 (1996) 343 [hep-th/9604030] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, arXiv:1906.05225 [INSPIRE].
  16. [16]
    B. de Wit, D.J. Smit and N.D. Hari Dass, Residual Supersymmetry of Compactified D = 10 Supergravity, Nucl. Phys.B 283 (1987) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Y. Hamada, A. Hebecker, G. Shiu and P. Soler, On brane gaugino condensates in 10d, JHEP04 (2019) 008 [arXiv:1812.06097] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    R. Kallosh, Gaugino Condensation and Geometry of the Perfect Square, Phys. Rev.D 99 (2019) 066003 [arXiv:1901.02023] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    Y. Hamada, A. Hebecker, G. Shiu and P. Soler, Understanding KKLT from a 10d perspective, JHEP06 (2019) 019 [arXiv:1902.01410] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    F.F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT AdS vacuum and uplifting, arXiv:1902.01415 [INSPIRE].
  22. [22]
    F. Carta, J. Moritz and A. Westphal, Gaugino condensation and small uplifts in KKLT, JHEP08 (2019) 141 [arXiv:1902.01412] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Koerber and L. Martucci, From ten to four and back again: How to generalize the geometry, JHEP08 (2007) 059 [arXiv:0707.1038] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    P. Koerber and L. Martucci, Warped generalized geometry compactifications, effective theories and non-perturbative effects, Fortsch. Phys.56 (2008) 862 [arXiv:0803.3149] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    P. Koerber, Lectures on Generalized Complex Geometry for Physicists, Fortsch. Phys.59 (2011) 169 [arXiv:1006.1536] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    D. Cassani and A. Bilal, Effective actions and N = 1 vacuum conditions from SU(3) × SU(3) compactifications, JHEP09 (2007) 076 [arXiv:0707.3125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP11 (2005) 020 [hep-th/0505212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP04 (2007) 101 [hep-th/0612237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    I. Benmachiche and T.W. Grimm, Generalized N = 1 orientifold compactifications and the Hitchin functionals, Nucl. Phys.B 748 (2006) 200 [hep-th/0602241] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  32. [32]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane Potentials from Fluxes in AdS/CFT, JHEP06 (2010) 072 [arXiv:1001.5028] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys.B 708 (2005) 268 [hep-th/0408036] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations, JHEP04 (2011) 061 [arXiv:1012.4018] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    B. Heidenreich, L. McAllister and G. Torroba, Dynamic SU(2) Structure from Seven-branes, JHEP05 (2011) 110 [arXiv:1011.3510] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    A.H. Chamseddine and M.S. Volkov, NonAbelian BPS monopoles in N = 4 gauged supergravity, Phys. Rev. Lett.79 (1997) 3343 [hep-th/9707176] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    J.M. Maldacena and C. Núñez, Towards the large N limit of pure N = 1 superYang-Mills, Phys. Rev. Lett.86 (2001) 588 [hep-th/0008001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Butti, M. Graña, R. Minasian, M. Petrini and A. Zaffaroni, The Baryonic branch of Klebanov-Strassler solution: A supersymmetric family of SU(3) structure backgrounds, JHEP03 (2005) 069 [hep-th/0412187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP08 (2005) 099 [hep-th/0506154] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP11 (2005) 048 [hep-th/0507099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    P. Koerber and L. Martucci, D-branes on AdS flux compactifications, JHEP01 (2008) 047 [arXiv:0710.5530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A.R. Frey and M. Lippert, AdS strings with torsion: Non-complex heterotic compactifications, Phys. Rev.D 72 (2005) 126001 [hep-th/0507202] [INSPIRE].ADSGoogle Scholar
  43. [43]
    E. García-Valdecasas and A. Uranga, On the 3-form formulation of axion potentials from D-brane instantons, JHEP02 (2017) 087 [arXiv:1605.08092] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    E. García-Valdecasas Tenreiro and A. Uranga, Backreacting D-brane instantons on branes at singularities, JHEP08 (2017) 061 [arXiv:1704.05888] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    C. Vafa, Superstrings and topological strings at large N, J. Math. Phys.42 (2001) 2798 [hep-th/0008142] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large N duality, J. Math. Phys.42 (2001) 3209 [hep-th/0011256] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    M. Petrini, G. Solard and T. Van Riet, AdS vacua with scale separation from IIB supergravity, JHEP11 (2013) 010 [arXiv:1308.1265] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  48. [48]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  49. [49]
    B. Heidenreich, SL(2, R) covariant conditions for N = 1 flux vacua, JHEP10 (2011) 057 [arXiv:1107.3163] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP11 (2008) 021 [arXiv:0807.4540] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M. Grana, N. Kovensky and A. Retolaza, in preparation.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Iosif Bena
    • 1
  • Mariana Graña
    • 1
  • Nicolas Kovensky
    • 2
    Email author
  • Ander Retolaza
    • 1
  1. 1.Institut de Physique ThéoriqueUniversité Paris SaclayGif-sur-Yvette CEDEXFrance
  2. 2.Mathematical Sciences and STAG Research CentreUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations