Advertisement

Journal of High Energy Physics

, 2019:193 | Cite as

Monopoles, strings, and necklaces in SO(10) and E6

  • George LazaridesEmail author
  • Qaisar Shafi
Open Access
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract

We employ a variety of symmetry breaking patterns in SO(10) and E6 Grand Unified Theories to demonstrate the appearance of topological defects including magnetic monopoles, strings, and necklaces. We show that independent of the symmetry breaking pattern, a topologically stable superheavy monopole carrying a single unit of Dirac charge as well as color magnetic charge is always present. Lighter intermediate mass topologically stable monopoles carrying two or three quanta of Dirac charge can appear in SO(10) and E6 models respectively. These lighter monopoles as well as topologically stable intermediate scale strings can survive an inflationary epoch. We also show the ap­ pearance of a novel necklace configuration in SO(10) broken to the Standard Model via SU(4)c × SU(2)L × SU(2)R. It consists of SU(4)c and SU(2)R monopoles connected by flux tubes. Necklaces consisting of monopoles and antimonopoles joined together by flux tubes are also identified. Even in the absence of topologically stable strings, a monopole-string system can temporarily appear. This system decays by emitting gravity waves and we provide an example in which the spectrum of these waves is strongly peaked around 10−4 Hz with Ωqwh2 ≃10−12. This spectrum should be within the detection capability of LISA.

Keywords

Solitons Monopoles and Instantons Gauge Symmetry String theory and cosmic strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev.D 10 (1974) 275 [Erratum ibid.D 11 (1975) 703] [INSPIRE].
  2. [2]
    H. Georgi, and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett.32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Georgi, The state of the artgauge theories, AlP Conf. Proc .23 (1975) 575.Google Scholar
  4. [4]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys.93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Gürsey, P. Ramond and P. Sikivie, A universal gauge theory model based on E 6, Phys. Lett.B 60 (1976) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Y. Achiman and B. Stech, Quark lepton symmetry and mass scales in an E 6unified gauge model, Phys. Lett.B 77 (1978) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Q. Shafi, Es as a unifying gauge symmetry, Phys. Lett.B 79 (1978) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys.B 79 (1974) 276 [INSPIRE].
  9. [9]
    A.M. Polyakov, Particle spectrum in the quantum field theory, JETP Lett.20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz.20 (1974) 430] [INSPIRE].
  10. [10]
    M. Daniel, G. Lazarides and Q. Shafi, SU(5) monopoles, magnetic symmetry and confinement, Nucl. Phys.B 170 (1980) 156 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Lazarides, Q. Shafi and W.P. Trower, Consequences of a monopole with Dirac magnetic charge, Phys. Rev. Lett.49 (1982) 1756 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G. Lazarides, M. Magg and Q. Shafi, Phase transitions and magnetic monopoles in SO(10), Phys. Lett.B 97 (1980) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Q. Shafi and C. Wetterich, Magnetic monopoles in grand unified and Kaluza-Klein theories, NATO Sci. Ser.B 111 (1984) 47 [INSPIRE].Google Scholar
  14. [14]
    G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Magnetic monopoles from superstring models, Phys. Rev. Lett. 58 (1987) 1707 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Lazarides, Q. Shafi and T.N. Tomaras, Nonexistence of spherically symmetric monopole solutions in the three generation superstring model, Phys. Rev.D 39 (1989) 1239 [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    T.W. Kephart, C.-A. Lee and Q. Shafi, Family unification, exotic states and light magnetic monopoles, JHEP01 (2007) 088 [hep-ph/0602055] [INSPIRE].
  17. [17]
    T.W. Kephart, G.K. Leontaris and Q. Shafi, Magnetic monopoles and free fractionally charged states at accelerators and in cosmic rays, JHEP10 (2017) 176 [arXiv:1707.08067] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T.W.B. Kibble, G. Lazarides and Q. Shafi, Strings in S0(10), Phys. Lett.B 113 (1982) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Nambu, Strings, monopoles and gauge fields, Phys. Rev.D 10 (1974) 4262 [INSPIRE].ADSGoogle Scholar
  20. [20]
    Y. Nambu, String-like configurations in the Weinberg-Salam theory, Nucl. Phys.B 130 (1977) 505 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    T.W.B. Kibble, G. Lazarides and Q. Shafi, Walls bounded by strings, Phys. Rev.D 26 (1982) 435 [INSPIRE].ADSGoogle Scholar
  22. [22]
    T.W.B. Kibble and T. Vachaspati, Monopoles on strings, J. Phys.G 42 (2015) 094002 [arXiv:1506.02022] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Lazarides and Q. Shafi, Superconducting membranes, Phys. Lett.B 159 (1985) 261 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.T. Mäkinen et al., Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid 3He, Nature Commun.10 (2019) 237 [arXiv:1807.04328] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Lazarides and Q. Shafi, Extended structures at intermediate scale s in an inflationary cosmology, Phys. Lett.B 148 (1984) 35 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V.N. Şenoğuz and Q. Shafi, Primordial monopoles, proton decay, gravity waves and GUT inflation, Phys. Lett.B 752 (2016) 169 [arXiv:1510.04442] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  28. [28]
    J.J. Blanco-Pillado, K.D. Olum and X. Siemens, New limits on cosmic strings from gravitational wave observation, Phys. Lett.B 778 (2018) 392 [arXiv:1709.02434] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Chakrabortty, R. Maji, S.K. Patra, T. Srivastava and S. Mohanty, Roadmap of left-right models based on GUTs, Phys. Rev.D 97 (2018) 095010 [arXiv:1711.11391] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Chakrabortty, R. Maji and S.F. King, Unification, proton decay and topological defects in non-SUSY GUTs with thresholds, Phys. Rev.D 99 (2019) 095008 [arXiv:1901.05867] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lif etime and fermion masses in an SO(10) model, Nucl. Phys.B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling parity and SU(2)Rbreaking scales: a new approach to left-right symmetric models, Phys. Rev. Lett.52 (1984) 1072 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Witten, Superconducting strings, Nucl. Phys.B 249 (1985) 557 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Lazarides, R. Ruiz de Austri and R. Trotta, Constraints on a mixed inflaton and curvaton scenario for the generation of the curvature perturbation, Phys. Rev.D 70 (2004) 123527 [hep-ph/0409335] [INSPIRE].
  35. [35]
    M. Yasue, Symmetry breaking of SO(10) and constraints on Higgs potential. 1. Adjoint (45) and spinorial (16), Phys. Rev.D 24 (1981) 1005 [INSPIRE].
  36. [36]
    H. Georgi and D.V. Nanopoulos, Ordinary predictions from grand principles: t-quark mass in O(10), Nucl. Phys.B 155 (1979) 52 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Langacker and J. Wang, U(1)′ symmetry breaking in supersymmetric E 6models, Phys. Rev.D 58 (1998) 115010 [hep-ph/9804428] [INSPIRE].
  38. [38]
    N. Ganoulis and G. Lazarides, Fermionic zero modes for cosmic strings, Nucl. Phys.B 316 (1989) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Q. Shafi and A. Vilenkin, Inflation with SU(5), Phys. Rev. Lett.52 (1984) 691 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Q. Shafi and V.N. Şenoğuz, Coleman- Weinberg potential in good agreement with WMAP, Phys. Rev.D 73 (2006) 127301 [astro-ph/0603830] [INSPIRE].
  41. [41]
    N. Okada, V.N. fJenoguz and Q. Shafi, The observational status of simple inflationary models: an update, Turk. J. Phys.40 (2016) 150 [arXiv:1403.6403] [INSPIRE].
  42. [42]
    E. Parker, Cosmic magnetic fields, Clarendon, Oxford, U.K. (1979).Google Scholar
  43. [43]
    G. Lazarides, Q. Shafi and T.F. Walsh, Superheavy magnetic monopol e hunt, Phys. Lett.B 100 (1981) 21 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.S. Turner, E.N. Parker and T.J. Bogdan, Magnetic monopoles and the survival of galactic magnetic fields, Phys. Rev.D 26 (1982) 1296 [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Lazarides and C. Panagiotakopoulos, Gravitational waves from double hybrid inflation, Phys. Rev.D 92 (2015) 123502 [arXiv:1505.04926] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Electrical and Computer Engineering, Faculty of EngineeringAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Bartol Research Institute, Department of Physics and AstronomyUniversity of DelawareNewarkU.S.A.

Personalised recommendations