Advertisement

Journal of High Energy Physics

, 2019:189 | Cite as

Massive higher spins: effective theory and consistency

  • Brando Bellazzini
  • Francesco Riva
  • Javi Serra
  • Francesco SgarlataEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We construct the effective field theory for a single massive higher-spin particle in flat spacetime. Positivity bounds of the S-matrix force the cutoff of the theory to be well below the naive strong-coupling scale, forbid any potential and make therefore higher- derivative operators important even at low energy. As interesting application, we discuss in detail the massive spin-3 theory and show that an extended Galileon-like symmetry of the longitudinal modes, even with spin, emerges at high energy.

Keywords

Effective Field Theories Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Kehagias and A. Riotto, On the inflationary perturbations of massive higher-spin fields, JCAP07 (2017) 046 [arXiv:1705.05834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Franciolini, A. Kehagias, A. Riotto and M. Shiraishi, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev.D 98 (2018) 043533 [arXiv:1803.03814] [INSPIRE].ADSGoogle Scholar
  3. [3]
    L. Bordin, P. Creminelli, A. Khmelnitsky and L. Senatore, Light particles with spin in inflation, JCAP10 (2018) 013 [arXiv:1806.10587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE].
  5. [5]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev.D 10 (1974) 1145 [Erratum ibid.D 11 (1975) 972] [INSPIRE].
  6. [6]
    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys.305 (2003) 96 [hep-th/0210184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys.84 (2012) 987 [arXiv:1007.0435] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Rahman, Higher spin theory — part I, PoS(ModaveVIII)004 (2012) [arXiv:1307.3199] [INSPIRE].
  9. [9]
    S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev.159 (1967) 1251 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Weinberg, Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Porrati and R. Rahman, A model independent ultraviolet cutoff for theories with charged massive higher spin fields, Nucl. Phys.B 814 (2009) 370 [arXiv:0812.4254] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Bonifacio and K. Hinterbichler, Universal bound on the strong coupling scale of a gravitationally coupled massive spin-2 particle, Phys. Rev.D 98 (2018) 085006 [arXiv:1806.10607] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude, JHEP10 (2017) 026 [arXiv:1607.04253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A bound on massive higher spin particles, JHEP04 (2019) 056 [arXiv:1811.01952] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP02 (2017) 034 [arXiv:1605.06111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond positivity bounds and the fate of massive gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Fronsdal, Massless fields with integer spin, Phys. Rev.D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev.D 21 (1980) 358 [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
  23. [23]
    K. Hinterbichler, A. Joyce and R.A. Rosen, Eikonal scattering and asymptotic superluminality of massless higher spin fields, Phys. Rev.D 97 (2018) 125019 [arXiv:1712.10021] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    M. Porrati, Old and new no go theorems on interacting massless particles in flat space, in Proceedings, 17thInternational Seminar on High Energy Physics (Quarks 2012), Yaroslavl, Russia, 4–7 June 2012 [arXiv:1209.4876] [INSPIRE].
  25. [25]
    M. Bianchi, P.J. Heslop and F. Riccioni, More on “La Grande Bouffe”, JHEP08 (2005) 088 [hep-th/0504156] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev.D 9 (1974) 898 [INSPIRE].
  27. [27]
    R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys.B 759 (2006) 147 [hep-th/0512342] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    B. Bellazzini, J. Serra, F. Sgarlata and F. Riva, Galileons and effective theory, to appear.Google Scholar
  29. [29]
    K. Hinterbichler and A. Joyce, Goldstones with extended shift symmetries, Int. J. Mod. Phys.D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1, Nuovo Cim.A 42 (1965) 930 [INSPIRE].
  32. [32]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for particles with spin, JHEP03 (2018) 011 [arXiv:1706.02712] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for massive spin-1 and spin-2 fields, JHEP03 (2019) 182 [arXiv:1804.10624] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Bonifacio and K. Hinterbichler, Bounds on amplitudes in effective theories with massive spinning particles, Phys. Rev.D 98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    J.J. Bonifacio, Aspects of massive spin-2 effective field theories, Ph.D. thesis, Oxford U., Oxford, U.K. (2017) [INSPIRE].
  36. [36]
    T. Griffin, K.T. Grosvenor, P. Hǒrava and Z. Yan, Scalar field theories with polynomial shift symmetries, Commun. Math. Phys.340 (2015) 985 [arXiv:1412.1046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP09 (2003) 029 [hep-th/0303116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon non-renormalization, JHEP11 (2016) 100 [arXiv:1606.02295] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP05 (2010) 095 [Erratum ibid.11 (2011) 128] [arXiv:0912.4258] [INSPIRE].
  40. [40]
    C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP04 (2016) 002 [arXiv:1601.04068] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying models of new physics via W W scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
  42. [42]
    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive Galileon positivity bounds, JHEP09 (2017) 072 [arXiv:1702.08577] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    B. Bellazzini, J. Elias-Miro, R. Rattazzi, M. Riembau and F. Riva, Positivity bounds and super-soft amplitudes, to appear.Google Scholar
  44. [44]
    C. Englert, G.F. Giudice, A. Greljo and M. Mccullough, The Ĥ -parameter: an oblique Higgs view, JHEP09 (2019) 041 [arXiv:1903.07725] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev.D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, JHEP11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP11 (2017) 020 [arXiv:1706.03070] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous Z Z and Z γ processes, Phys. Rev.D 98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Bruggisser, F. Riva and A. Urbano, Strongly interacting light dark matter, SciPost Phys.3 (2017) 017 [arXiv:1607.02474] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Bruggisser, F. Riva and A. Urbano, The last gasp of dark matter effective theory, JHEP11 (2016) 069 [arXiv:1607.02475] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ positivity, weak gravity conjecture and modified gravity, arXiv:1902.03250 [INSPIRE].
  52. [52]
    \D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl. Phys.B 541 (1999) 323 [hep-th/9808004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueUniversité Paris SaclayGif-sur-YvetteFrance
  2. 2.Départment de Physique ThéoriqueUniversité de GenéveGenéve 4Switzerland
  3. 3.Physik-DepartmentTechnische Universit at MünchenGarchingGermany
  4. 4.SISSA and INFN TriesteTriesteItaly

Personalised recommendations