Advertisement

Journal of High Energy Physics

, 2019:185 | Cite as

A holographic kaleidoscope for \( \mathcal{N} \) = 1*

  • Nikolay BobevEmail author
  • Friðrik Freyr Gautason
  • Benjamin E. Niehoff
  • Jesse van Muiden
Open Access
Regular Article - Theoretical Physics
  • 30 Downloads

Abstract

We study in detail the recently-found family of asymptotically AdS5× S5 type IIB supergravity solutions dual to the \( \mathcal{N} \) = 1* SYM theory with equal masses. The backgrounds exhibit a naked singularity and are labelled by a dimensionless parameter, λ, which is interpreted as the ratio of the gaugino condensate and the mass in the dual field theory. When |λ| < 1 we show that the naked singularity is due to a smeared distribution of polarized (p, q) five-branes. For this range of parameters we study the nature of the singularity using probe strings and show that the dual line operators exhibit screening behavior. These features are in line with the physics anticipated in the work of Polchinski-Strassler. For |λ| = 1 the naked singularity has qualitatively different behavior which has no clear brane interpretation. We show that when λ = 1 the singularity can be excised and replaced by a smooth Euclidean supergravity solution with an S4 boundary.

Keywords

AdS-CFT Correspondence D-branes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SBresolution of naked singularities, JHEP08 (2000) 052 [hep-th/0007191] [INSPIRE].
  2. [2]
    J.M. Maldacena and C. Núñez, Towards the large N limit of pure N = 1 super-Yang-Mills, Phys. Rev. Lett.86 (2001) 588 [hep-th/0008001] [INSPIRE].
  3. [3]
    O. Aharony, A note on the holographic interpretation of string theory backgrounds with varying flux, JHEP03 (2001) 012 [hep-th/0101013] [INSPIRE].
  4. [4]
    S.S. Gubser, C.P. Herzog and I.R. Klebanov, Symmetry breaking and axionic strings in the warped deformed conifold, JHEP09 (2004) 036 [hep-th/0405282] [INSPIRE].
  5. [5]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 superYang-Mills theory, Nucl. Phys.B 569 (2000) 451 [hep-th/9909047] [INSPIRE].
  6. [6]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  7. [7]
    K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys.4 (2002) 627 [hep-th/0006066] [INSPIRE].
  8. [8]
    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE].
  9. [9]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys.B 460 (1996) 299 [hep-th/9510101] [INSPIRE].
  10. [10]
    N. Dorey, An elliptic superpotential for softly broken N = 4 supersymmetric Yang-Mills theory, JHEP07 (1999) 021 [hep-th/9906011] [INSPIRE].
  11. [11]
    N. Dorey and S.P. Kumar, Softly broken N = 4 supersymmetry in the large N limit, JHEP02 (2000) 006 [hep-th/0001103] [INSPIRE].
  12. [12]
    O. Aharony, N. Dorey and S.P. Kumar, New modular invariance in the N = 1* theory, operator mixings and supergravity singularities, JHEP06 (2000) 026 [hep-th/0006008] [INSPIRE].
  13. [13]
    R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  14. [14]
    M. Gunaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett.B 154 (1985) 268.Google Scholar
  15. [15]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 supergravity, Nucl. Phys.B 259 (1985) 460 [INSPIRE].
  16. [16]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys.B 272 (1986) 598 [INSPIRE].
  17. [17]
    R.C. Myers, Dielectric branes, JHEP12 (1999) 022 [hep-th/9910053] [INSPIRE].
  18. [18]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys.65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].
  19. [19]
    A. Baguet, O. Hohm and H. Samtleben, Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev.D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].
  20. [20]
    K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton, Nucl. Phys.B 594 (2001) 209 [hep-th/0004063] [INSPIRE].
  21. [21]
    M. Petrini, H. Samtleben, S. Schmidt and K. Skenderis, The 10d uplift of the GPPZ solution, JHEP07 (2018) 026 [arXiv:1805.01919] [INSPIRE].
  22. [22]
    N. Bobev, F.F. Gautason, B.E. Niehoff and J. van Muiden, Uplifting GPPZ: a ten-dimensional dual of \( \mathcal{N} \) = 1*, JHEP10 (2018) 058 [arXiv:1805.03623] [INSPIRE].
  23. [23]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys.4 (2000) 679 [hep-th/0002160] [INSPIRE].
  24. [24]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys.A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
  25. [25]
    N. Bobev et al., Holography for \( \mathcal{N} \) = 1* on S 4 , JHEP10 (2016) 095 [arXiv:1605.00656] [INSPIRE].
  26. [26]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys.B 447 (1995) 95 [hep-th/9503121] [INSPIRE].
  27. [27]
    A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in five-dimensions, Phys. Lett.B 487 (2000) 14 [hep-th/9812035] [INSPIRE].
  28. [28]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP07 (2000) 038 [hep-th/9906194] [INSPIRE].
  29. [29]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys.B 138 (1978) 1 [INSPIRE].
  30. [30]
    C. Montonen and D.I. Olive, Magnetic monopoles as gauge particles?, Phys. Lett.B 72 (1977) 117.Google Scholar
  31. [31]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE].
  32. [32]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys.B 631 (2002) 159 [hep-th/0112119] [INSPIRE].
  33. [33]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08 (2001) 041 [hep-th/0105276] [INSPIRE].
  34. [34]
    D. Marolf, Chern-Simons terms and the three notions of charge, in the proceedings of the International Conference dedicated to the memory of ProfeSSOR Efim Fradkin, June 5–10, Moscow, Russia (2000), hep-th/0006117 [INSPIRE].
  35. [35]
    J.X. Lu and S. Roy, An SL(2, ℤ) multiplet of type IIB super five-branes, Phys. Lett.B 428 (1998) 289 [hep-th/9802080] [INSPIRE].
  36. [36]
    D. Tong, NS5-branes, T duality and world sheet instantons, JHEP07 (2002) 013 [hep-th/0204186] [INSPIRE].
  37. [37]
    E. Witten, Bound states of strings and p-branes, Nucl. Phys.B 460 (1996) 335 [hep-th/9510135] [INSPIRE].
  38. [38]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].
  39. [39]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett.80 (1998) 4859 [hep-th/9803002] [INSPIRE].
  40. [40]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J.C 22 (2001) 379 [hep-th/9803001] [INSPIRE].
  41. [41]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev.D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].
  42. [42]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys.B 643 (2002) 157 [hep-th/0205160] [INSPIRE].
  43. [43]
    A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an N = 2 supergravity solution, Phys. Rev.D 63 (2001) 044009 [hep-th/0008076] [INSPIRE].
  44. [44]
    C.V. Johnson, A.W. Peet and J. Polchinski, Gauge theory and the excision of repulson singularities, Phys. Rev.D 61 (2000) 086001 [hep-th/9911161] [INSPIRE].
  45. [45]
    K.A. Intriligator, Bonus symmetries of N = 4 superYang-Mills correlation functions via AdS duality, Nucl. Phys.B 551 (1999) 575 [hep-th/9811047] [INSPIRE].
  46. [46]
    D.Z. Freedman and J.A. Minahan, Finite temperature effects in the supergravity dual of the N = 1* gauge theory, JHEP01 (2001) 036 [hep-th/0007250] [INSPIRE].
  47. [47]
    I. Bena et al., Holographic dual of hot Polchinski-Strassler quark-gluon plasma, JHEP09 (2019) 033 [arXiv:1805.06463] [INSPIRE].
  48. [48]
    N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2* on S 4, JHEP07 (2014) 001 [arXiv:1311.1508] [INSPIRE].
  49. [49]
    I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) × SU(N + M ) gauge theories, Nucl. Phys.B 578 (2000) 123 [hep-th/0002159] [INSPIRE].
  50. [50]
    M. Bianchi, O. DeWolfe, D.Z. Freedman and K. Pilch, Anatomy of two holographic renormalization group flows, JHEP01 (2001) 021 [hep-th/0009156] [INSPIRE].
  51. [51]
    O. Biquard, Métriques hyper-Kählériennes pliées, arXiv:1503.04128 [INSPIRE].
  52. [52]
    B.E. Niehoff and H.S. Reall, Evanescent ergosurfaces and ambipolar hyper-Kähler metrics, JHEP04 (2016) 130 [arXiv:1601.01898] [INSPIRE].
  53. [53]
    N. Kim and S.-J. Kim, Perturbative solutions of \( \mathcal{N} \) = 1* holography on S 4, JHEP07 (2019) 169 [arXiv:1904.02038] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Nikolay Bobev
    • 1
    Email author
  • Friðrik Freyr Gautason
    • 1
  • Benjamin E. Niehoff
    • 1
  • Jesse van Muiden
    • 1
  1. 1.Instituut voor Theoretische Fysica, KU LeuvenLeuvenBelgium

Personalised recommendations