Journal of High Energy Physics

, 2019:180 | Cite as

Little string theories on curved manifolds

  • Ofer Aharony
  • Mikhail EvtikhievEmail author
  • Andrey Feldman
Open Access
Regular Article - Theoretical Physics


In this paper, we study the 6d Little String Theory (LST) (the decoupled theory on the worldvolume of N NS5-branes) on curved manifolds, by using its holographic duality to Type II string theory in asymptotically linear dilaton backgrounds. We focus on backgrounds with a large number of Killing vectors (namely, products of maximally symmetric spaces), without requiring supersymmetry (we do not turn on any background fields except the metric). LST is non-local so it is not obvious which spaces it can be defined on; we show that holography implies that the theory cannot be put on negatively curved spaces, but only on spaces with zero or positive curvature. For example, one cannot put LST on a product of an anti-de Sitter space times another space, without turning on extra background fields. On spaces with positive curvature, such as S6, ℝ2× S4, S3× S3, etc., we typically find (for large N) dual holographic backgrounds which are weakly coupled and weakly curved everywhere, so that they can be well-described by Type II supergravity. In some cases more than one smooth solution exists for LST on the same space, and they all contribute to the partition function. We also study the thermodynamical properties of LST compactified on spheres, finding the leading correction to the Hagedorn behavior of the spectrum, which is different on curved space than on flat space. We discuss the holographic renormalization procedure, which must be implemented in order to get a finite free energy for the LST; we do not know how to implement it for general spaces, but we can (and we do) implement it for the theory compactified on S4.


eBlack Holes in String Theory Gauge-gravity correspondence D-branes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M. Berkooz, M. Rozali and N. Seiberg, Matrix description of M-theory on T 4and T 5 , Phys. Lett.B 408 (1997) 105 [hep-th/9704089] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T 5and T 5/Z2 , Phys. Lett.B 408 (1997) 98 [hep-th/9705221] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    O. Aharony, A brief review of ‘little string theories’, Class. Quant. Grav.17 (2000) 929 [hep-th/9911147] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    D. Kutasov, Introduction to little string theory, prepared for ICTP Spring School on Superstrings and Related Matters, Trieste, Italy, 2–10 April 2001 [ICTP Lect. Notes Ser.7 (2002) 165] [INSPIRE].
  5. [5]
    O. Aharony, A. Giveon and D. Kutasov, LSZ in LST, Nucl. Phys.B 691 (2004) 3 [hep-th/0404016] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and holography, JHEP10 (1998) 004 [hep-th/9808149] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys.1 (1998) 148 [hep-th/9707079] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    E. Witten, On the conformal field theory of the Higgs branch, JHEP07 (1997) 003 [hep-th/9707093] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP10 (1999) 034 [hep-th/9909110] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J.M. Maldacena and C. Núñez, Towards the large N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett.86 (2001) 588 [hep-th/0008001] [INSPIRE].
  11. [11]
    J.M. Maldacena and H.S. Nastase, The supergravity dual of a theory with dynamical supersymmetry breaking, JHEP09 (2001) 024 [hep-th/0105049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Bobev, P. Bomans and F.F. Gautason, Spherical branes, JHEP08 (2018) 029 [arXiv:1805.05338] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    A. Buchel, Gauge/gravity correspondence in accelerating universe, Phys. Rev.D 65 (2002) 125015 [hep-th/0203041] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    O. Aharony, The non AdS/non CFT correspondence, or three different paths to QCD, in Progress in string, field and particle theory: proceedings, NATO Advanced Study Institute, EC Summer School, Cargese, France, 25 June–11 July 2002, pg. 3 [hep-th/0212193] [INSPIRE].
  15. [15]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys.B 463 (1996) 420 [hep-th/9511222] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys.48 (2000) 125 [hep-th/9812032] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys.208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev.D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev.D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    R.B. Mann, Entropy of rotating Misner string space-times, Phys. Rev.D 61 (2000) 084013 [hep-th/9904148] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically AdS and flat space-times, Nucl. Phys.B 563 (1999) 259 [hep-th/9906127] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys.217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08 (2001) 041 [hep-th/0105276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys.B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    D. Marolf and A. Virmani, Holographic renormalization of gravity in little string theory duals, JHEP06 (2007) 042 [hep-th/0703251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A.L. Cotrone, J.M. Pons and P. Talavera, Notes on a SQCD-like plasma dual and holographic renormalization, JHEP11 (2007) 034 [arXiv:0706.2766] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    J.M. Maldacena and A. Strominger, Semiclassical decay of near extremal five-branes, JHEP12 (1997) 008 [hep-th/9710014] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  30. [30]
    D. Kutasov and D.A. Sahakyan, Comments on the thermodynamics of little string theory, JHEP02 (2001) 021 [hep-th/0012258] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Buchel, On the thermodynamic instability of LST, hep-th/0107102 [INSPIRE].
  32. [32]
    S.S. Gubser, A.A. Tseytlin and M.S. Volkov, Non Abelian 4 − D black holes, wrapped five-branes and their dual descriptions, JHEP09 (2001) 017 [hep-th/0108205] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Buchel, A holographic perspective on Gubser-Mitra conjecture, Nucl. Phys.B 731 (2005) 109 [hep-th/0507275] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    T. Harmark and N.A. Obers, Hagedorn behavior of little string theory from string corrections to NS5-branes, Phys. Lett.B 485 (2000) 285 [hep-th/0005021] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  35. [35]
    M. Berkooz and M. Rozali, Near Hagedorn dynamics of NS five-branes, or a new universality class of coiled strings, JHEP05 (2000) 040 [hep-th/0005047] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  36. [36]
    M. Rangamani, Little string thermodynamics, JHEP06 (2001) 042 [hep-th/0104125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    K. Narayan and M. Rangamani, Hot little string correlators: a view from supergravity, JHEP08 (2001) 054 [hep-th/0107111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    P.A. DeBoer and M. Rozali, Thermal correlators in little string theory, Phys. Rev.D 67 (2003) 086009 [hep-th/0301059] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    A. Parnachev and A. Starinets, The silence of the little strings, JHEP10 (2005) 027 [hep-th/0506144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    T. Harmark and N.A. Obers, Thermodynamics of the near-extremal NS5-brane, Nucl. Phys.B 742 (2006) 41 [hep-th/0510098] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    A. Parnachev and D.A. Sahakyan, On non-critical superstring/black hole transition, Phys. Rev.D 73 (2006) 086008 [hep-th/0512075] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav.24 (2007) R1 [hep-th/0701022] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    J.L.F. Barbon, C.A. Fuertes and E. Rabinovici, Deconstructing the little Hagedorn holography, JHEP09 (2007) 055 [arXiv:0707.1158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    O. Lorente-Espin and P. Talavera, A silence black hole: Hawking radiation at the Hagedorn temperature, JHEP04 (2008) 080 [arXiv:0710.3833] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    J. Barbón and E. Rabinovici, Aspects of Hagedorn holography, Les Houches87 (2008) 449 [INSPIRE].
  46. [46]
    G. Bertoldi and C. Hoyos-Badajoz, Stability of linear dilaton black holes at the Hagedorn temperature, JHEP08 (2009) 078 [arXiv:0903.3431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    O. Lorente-Espin, Some considerations about NS5 and LST Hawking radiation, Phys. Lett.B 703 (2011) 627 [arXiv:1107.0713] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    Y. Sugawara, Thermodynamics of superstring on near-extremal NS5 and effective Hagedorn behavior, JHEP10 (2012) 159 [arXiv:1208.3534] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, Clay Math. Proc.1 (2002) 221 [hep-th/0009126] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  50. [50]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  52. [52]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    B. Kol, Topology change in general relativity and the black hole black string transition, JHEP10 (2005) 049 [hep-th/0206220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Kalisch, S. Möckel and M. Ammon, Critical behavior of the black hole/black string transition, JHEP08 (2017) 049 [arXiv:1706.02323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    B. Cardona and P. Figueras, Critical Kaluza-Klein black holes and black strings in D = 10, JHEP11 (2018) 120 [arXiv:1806.11129] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    O. Aharony, E.Y. Urbach and M. Weiss, Generalized Hawking-Page transitions, JHEP08 (2019) 018 [arXiv:1904.07502] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations