Journal of High Energy Physics

, 2019:175 | Cite as

Glueball spins in D = 3 Yang-Mills

  • Peter ConkeyEmail author
  • Sergei Dubovsky
  • Michael Teper
Open Access
Regular Article - Theoretical Physics


We determine spins of more than 100 low lying glueball states in D = 2 + 1 dimensional SU (4) gluodynamics by a lattice calculation. We go up to J = 8 in the spin value. We compare the resulting spectrum with predictions of the Axionic String Ansatz (ASA). We find a perfect match for 39 lightest states, corresponding to the first four string levels. In particular, this resolves tensions between the ASA predictions and earlier spin determinations. The observed spins of heavier glueballs are also in a good agreement with the ASA. We did not identify any sharp tension between lattice data and the ASA, but more work is needed to fully test the ASA predictions for the spins of 64 states at the fifth string level.


Lattice QCD Bosonic Strings 1/N Expansion Confinement 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys.B 72 (1974) 461 [INSPIRE].
  2. [2]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3 + 1 SU(N ) gauge theories, JHEP02 (2011) 030 [arXiv:1007.4720] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 2 + 1 SU(N ) gauge theories, JHEP05 (2011) 042 [arXiv:1103.5854] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Athenodorou and M. Teper, Closed flux tubes in higher representations and their string description in D = 2 + 1 SU(N ) gauge theories, JHEP06 (2013) 053 [arXiv:1303.5946] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Athenodorou and M. Teper, Closed flux tubes in D = 2 + 1 SU(N ) gauge theories: dynamics and effective string description, JHEP10 (2016) 093 [arXiv:1602.07634] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Athenodorou and M. Teper, On the mass of the world-sheet ‘axion’ in SU(N ) gauge theories in 3 + 1 dimensions, Phys. Lett.B 771 (2017) 408 [arXiv:1702.03717] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Lüscher, Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, Nucl. Phys.B 180 (1981) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Lüscher and P. Weisz, String excitation energies in SU(N ) gauge theories beyond the free-string approximation, JHEP07 (2004) 014 [hep-th/0406205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    O. Aharony and M. Field, On the effective theory of long open strings, JHEP01 (2011) 065 [arXiv:1008.2636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP12 (2010) 058 [arXiv:1008.2648] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Dubovsky, R. Flauger and V. Gorbenko, Effective String Theory Revisited, JHEP09 (2012) 044 [arXiv:1203.1054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    O. Aharony and Z. Komargodski, The Effective Theory of Long Strings, JHEP05 (2013) 118 [arXiv:1302.6257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube, Phys. Rev. Lett.111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Dubovsky, R. Flauger and V. Gorbenko, Flux Tube Spectra from Approximate Integrability at Low Energies, J. Exp. Theor. Phys.120 (2015) 399 [arXiv:1404.0037] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Elias Miro, A.L. Guerrieri, A. Hebbar, J. Penedones and P. Vieira, Flux Tube S-matrix Bootstrap, arXiv:1906.08098 [INSPIRE].
  16. [16]
    S. Dubovsky and V. Gorbenko, Towards a Theory of the QCD String, JHEP02 (2016) 022 [arXiv:1511.01908] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Dubovsky and G. Hernandez-Chifflet, Yang-Mills Glueballs as Closed Bosonic Strings, JHEP02 (2017) 022 [arXiv:1611.09796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    H.B. Meyer and M.J. Teper, High spin glueballs from the lattice, Nucl. Phys.B 658 (2003) 113 [hep-lat/0212026] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H.B. Meyer and M.J. Teper, Glueball Regge trajectories in (2 + 1)-dimensional gauge theories, Nucl. Phys.B 668 (2003) 111 [hep-lat/0306019] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H.B. Meyer, Glueball Regge trajectories, Ph.D. Thesis, Oxford U. (2004) [hep-lat/0508002] [INSPIRE].
  21. [21]
    B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large N limit, JHEP08 (2010) 119 [arXiv:1007.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Athenodorou and M. Teper, SU(N ) gauge theories in 2 + 1 dimensions: glueball spectra and k-string tensions, JHEP02 (2017) 015 [arXiv:1609.03873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Hellerman and I. Swanson, String Theory of the Regge Intercept, Phys. Rev. Lett.114 (2015) 111601 [arXiv:1312.0999] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Dubovsky, The QCD β-function On The String Worldsheet, Phys. Rev.D 98 (2018) 114025 [arXiv:1807.00254] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    J.C. Donahue and S. Dubovsky, Confining Strings, Infinite Statistics and Integrability, arXiv:1907.07799 [INSPIRE].
  26. [26]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP09 (2012) 133 [arXiv:1205.6805] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press (2007) [INSPIRE].
  28. [28]
    C. Chen, P. Conkey, S. Dubovsky and G. Hernández-Chifflet, Undressing Confining Flux Tubes with T T ̄, Phys. Rev.D 98 (2018) 114024 [arXiv:1808.01339] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    M.J. Teper, SU(N ) gauge theories in (2 + 1)-dimensions, Phys. Rev.D 59 (1999) 014512 [hep-lat/9804008] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Lüscher and U. Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation, Nucl. Phys.B 339 (1990) 222 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Cosmology and Particle Physics, Department of PhysicsNew York UniversityNew YorkU.S.A.
  2. 2.Rudolf Peierls Centre for Theoretical Physics, Clarendon LaboratoryUniversity of OxfordOxfordU.K.
  3. 3.All Souls CollegeUniversity of OxfordOxfordU.K.

Personalised recommendations