Advertisement

Journal of High Energy Physics

, 2019:169 | Cite as

IIB flux non-commutativity and the global structure of field theories

  • Iñaki García EtxebarriaEmail author
  • Ben Heidenreich
  • Diego Regalado
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

We discuss the origin of the choice of global structure for six dimensional (2, 0) theories and their compactifications in terms of their realization from IIB string theory on ALE spaces. We find that the ambiguity in the choice of global structure on the field theory side can be traced back to a subtle effect that needs to be taken into account when specifying boundary conditions at infinity in the IIB orbifold, namely the known non-commutativity of RR fluxes in spaces with torsion. As an example, we show how the classification of \( \mathcal{N} \) = 4 theories by Aharony, Seiberg and Tachikawa can be understood in terms of choices of boundary conditions for RR fields in IIB. Along the way we encounter a formula for the fractional instanton number of \( \mathcal{N} \) = 4 ADE theories in terms of the torsional linking pairing for rational homology spheres. We also consider six-dimensional (1, 0) theories, clarifying the rules for determining commutators of flux operators for discrete 2-form symmetries. Finally, we analyze the issue of global structure for four dimensional theories in the presence of duality defects.

Keywords

Global Symmetries D-branes Nonperturbative Effects Wilson ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. McKay, Graphs, singularities, and finite groups, Proc. Symp. Pure Math.37 (1981) 183.Google Scholar
  2. [2]
    E. Witten, Some comments on string dynamics, in the proceedings of Future perspectives in string theory (Strings’95), March 13–18, Los Angeles, U.S.A. (1995), hep-th/9507121 [INSPIRE].
  3. [3]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
  4. [4]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys.138 (1978) 1.Google Scholar
  5. [5]
    G. ’t Hooft, A property of electric and magnetic flux in nonabelian gauge theories, Nucl. Phys.B 153 (1979) 141 [INSPIRE].
  6. [6]
    S. Monnier, A modern point of view on anomalies, Fortsch. Phys.67 (2019) 1910012 [arXiv:1903.02828] [INSPIRE].
  7. [7]
    D.S. Freed, G.W. Moore and G. Segal, The uncertainty of fluxes, Commun. Math. Phys.271 (2007) 247 [hep-th/0605198] [INSPIRE].
  8. [8]
    D.S. Freed, G.W. Moore and G. Segal, Heisenberg groups and noncommutative fluxes, Annals Phys.322 (2007) 236 [hep-th/0605200] [INSPIRE].
  9. [9]
    E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE].
  10. [10]
    E. Witten, Duality relations among topological effects in string theory, JHEP05 (2000) 031 [hep-th/9912086] [INSPIRE].
  11. [11]
    N. Seiberg and W. Taylor, Charge lattices and consistency of 6D supergravity, JHEP06 (2011) 001 [arXiv:1103.0019] [INSPIRE].
  12. [12]
    D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys.326 (2014) 459 [arXiv:1212.1692] [INSPIRE].
  13. [13]
    S. Monnier, The global anomalies of (2, 0) superconformal field theories in six dimensions, JHEP09 (2014) 088 [arXiv:1406.4540] [INSPIRE].
  14. [14]
    S. Monnier, Topological field theories on manifolds with Wu structures, Rev. Math. Phys.29 (2017) 1750015 [arXiv:1607.01396] [INSPIRE].
  15. [15]
    S. Monnier, The anomaly field theories of six-dimensional (2, 0) superconformal theories, Adv. Theor. Math. Phys.22 (2018) 2035 [arXiv:1706.01903] [INSPIRE].
  16. [16]
    E. Witten, AdS/CFT correspondence and topological field theory, JHEP12 (1998) 012 [hep-th/9812012] [INSPIRE].
  17. [17]
    M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the defect group of a 6D SCFT, Lett. Math. Phys.106 (2016) 765 [arXiv:1503.04806] [INSPIRE].
  18. [18]
    O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP08 (2013) 115 [arXiv:1305.0318] [INSPIRE].
  19. [19]
    J.A. Harvey and A.B. Royston, Localized modes at a D-brane-O-plane intersection and heterotic Alice atrings, JHEP04 (2008) 018 [arXiv:0709.1482] [INSPIRE].
  20. [20]
    M. Cvetič, I. Garcia Etxebarria and J. Halverson, Three looks at instantons in F-theory — New insights from anomaly inflow, string junctions and heterotic duality, JHEP11 (2011) 101 [arXiv:1107.2388] [INSPIRE].
  21. [21]
    L. Martucci, Topological duality twist and brane instantons in F-theory, JHEP06 (2014) 180 [arXiv:1403.2530] [INSPIRE].
  22. [22]
    A. Gadde, S. Gukov and P. Putrov, Duality defects, arXiv:1404.2929 [INSPIRE].
  23. [23]
    B. Assel and S. Schäfer-Nameki, Six-dimensional origin of \( \mathcal{N} \) = 4 SYM with duality defects, JHEP12 (2016) 058 [arXiv:1610.03663] [INSPIRE].
  24. [24]
    J. Choi, J.J. Fernandez-Melgarejo and S. Sugimoto, Supersymmetric gauge theory with space-time-dependent couplings, PTEP2018 (2018) 013B01 [arXiv:1710.09792] [INSPIRE].
  25. [25]
    C. Lawrie, D. Martelli and S. Schäfer-Nameki, Theories of class F and anomalies, JHEP10 (2018) 090 [arXiv:1806.06066] [INSPIRE].
  26. [26]
    C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP04 (2017) 111 [arXiv:1612.05640] [INSPIRE].
  27. [27]
    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE].
  28. [28]
    S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP12 (1998) 025 [hep-th/9811048] [INSPIRE].
  29. [29]
    G.W. Moore, Anomalies, Gauss laws and Page charges in M-theory, Comptes Rendus Physique6 (2005) 251 [hep-th/0409158] [INSPIRE].
  30. [30]
    D. Belov and G.W. Moore, Classification of abelian spin Chern-Simons theories, hep-th/0505235 [INSPIRE].
  31. [31]
    D. Belov and G.W. Moore, Conformal blocks for AdS 5singletons, hep-th/0412167 [INSPIRE].
  32. [32]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups in quiver gauge theories, Nucl. Phys.B 747 (2006) 436 [hep-th/0602094] [INSPIRE].
  33. [33]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Central extensions of finite Heisenberg groups in cascading quiver gauge theories, Nucl. Phys.B 749 (2006) 245 [hep-th/0603114] [INSPIRE].
  34. [34]
    B.A. Burrington, J.T. Liu, M. Mahato and L.A. Pando Zayas, Finite Heisenbeg groups and Seiberg dualities in quiver gauge theories, Nucl. Phys.B 757 (2006) 1 [hep-th/0604092] [INSPIRE].
  35. [35]
    M.J. Hopkins and I.M. Singer, Quadratic functions in geometry, topology and M-theory, J. Diff. Geom.70 (2005) 329 [math/0211216] [INSPIRE].
  36. [36]
    D.S. Freed, Dirac charge quantization and generalized differential cohomology, in Surveys in differential geometry : papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, M.F. Atiyah et al. eds., International Press, U.S.A. (2000), hep-th/0011220 [INSPIRE].
  37. [37]
    G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP05 (2000) 032 [hep-th/9912279] [INSPIRE].
  38. [38]
    T. Hartman, Lectures on quantum gravity and black holes, available at http://www.hartmanhep.net/topics2015/.
  39. [39]
    D. Mumford, M. Nori and P. Norman, Tata Lectures on Theta III, Modern Birkhäuser Classics. Birkhäuser, Switzerland (2006).Google Scholar
  40. [40]
    Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories, JHEP05 (2014) 020 [arXiv:1309.0697] [INSPIRE].
  41. [41]
    M. Atiyah, Vector bundles and the Künneth formula, Topology1 (1962) 245.Google Scholar
  42. [42]
    A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, U.K. (2000).Google Scholar
  43. [43]
    B.S. Acharya, Confining strings from G 2holonomy space-times, hep-th/0101206 [INSPIRE].
  44. [44]
    S. Gukov, D. Pei, P. Putrov and C. Vafa, 4-manifolds and topological modular forms, arXiv:1811.07884 [INSPIRE].
  45. [45]
    D. Bump, Lie Groups, Graduate Texts in Mathematics, Springer, Germany (2004).Google Scholar
  46. [46]
    K.R. Klonoff, An index theorem in differential K-theory, Ph.D. thesis, The University of Texas at Austin, U.S.A. (2008).Google Scholar
  47. [47]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Phil. Soc.79 (1976) 71.Google Scholar
  48. [48]
    A. Conway, S. Friedl and G. Herrmann, Linking forms revisited, arXiv:1708.03754.
  49. [49]
    J. Evslin, What does(n’t) k-theory classify?, hep-th/0610328 [INSPIRE].
  50. [50]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP05 (2014) 028 [Erratum ibid.06 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  51. [51]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys.63 (2015) 468 [arXiv:1502.05405] [INSPIRE].
  52. [52]
    L. Bhardwaj, Classification of 6d \( \mathcal{N} \) = (1, 0) gauge theories, JHEP11 (2015) 002 [arXiv:1502.06594] [INSPIRE].
  53. [53]
    K. Hikami, Decomposition of Witten-Reshetikhin-Turaev invariant: Linking pairing and modular forms, AMS/IP Stud. Adv. Math.50 (2011) 131 [INSPIRE].
  54. [54]
    J. Davis and P. Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, American Mathematical Society, U.S.A. (2001).Google Scholar
  55. [55]
    E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].
  56. [56]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP04 (2014) 001 [arXiv:1401.0740] [INSPIRE].
  57. [57]
    J.H. Brodie, Fractional branes, confinement and dynamically generated superpotentials, Nucl. Phys.B 532 (1998) 137 [hep-th/9803140] [INSPIRE].
  58. [58]
    D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, Adv. Theor. Math. Phys.17 (2013) 241 [arXiv:1006.0146] [INSPIRE].
  59. [59]
    N. Seiberg, Y. Tachikawa and K. Yonekura, Anomalies of duality groups and extended conformal manifolds, PTEP2018 (2018) 073B04 [arXiv:1803.07366] [INSPIRE].
  60. [60]
    C.-T. Hsieh, Y. Tachikawa and K. Yonekura, On the anomaly of the electromagnetic duality of the Maxwell theory, arXiv:1905.08943 [INSPIRE].
  61. [61]
    C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling constants and their dynamical applications I, arXiv:1905.09315 [INSPIRE].
  62. [62]
    C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling constants and their dynamical applications II, arXiv:1905.13361 [INSPIRE].
  63. [63]
    E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys.5 (2002) 841 [hep-th/0006010] [INSPIRE].
  64. [64]
    D. Belov and G.W. Moore, Holographic action for the self-dual field, hep-th/0605038 [INSPIRE].
  65. [65]
    D.M. Belov and G.W. Moore, Type II actions from 11-dimensional Chern-Simons theories, hep-th/0611020 [INSPIRE].
  66. [66]
    S. Monnier, The global gravitational anomaly of the self-dual field theory, Commun. Math. Phys.325 (2014) 73 [arXiv:1110.4639] [INSPIRE].
  67. [67]
    S. Monnier, The global anomaly of the self-dual field in general backgrounds, Annales Henri Poincaré17 (2016) 1003 [arXiv:1309.6642] [INSPIRE].
  68. [68]
    A. Sen, F theory and orientifolds, Nucl. Phys.B 475 (1996) 562 [hep-th/9605150] [INSPIRE].
  69. [69]
    C. Vafa, Evidence for F-theory, Nucl. Phys.B 469 (1996) 403 [hep-th/9602022] [INSPIRE].
  70. [70]
    F. Denef, Les Houches lectures on constructing string vacua, Les Houches87 (2008) 483 [arXiv:0803.1194] [INSPIRE].
  71. [71]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav.27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].
  72. [72]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys.A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].
  73. [73]
    T. Weigand, F-theory, PoS(TASI2017)016 [arXiv:1806.01854] [INSPIRE].
  74. [74]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys.B 426 (1994) 19 [Erratum ibid.B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  75. [75]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys.B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
  76. [76]
    M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl. Phys.B 525 (1998) 117 [hep-th/9801205] [INSPIRE].
  77. [77]
    O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra representations, Nucl. Phys.B 541 (1999) 509 [hep-th/9804210] [INSPIRE].
  78. [78]
    E. Spanier, Algebraic topology, Mathematics subject classifications, Springer, Germany (1982).Google Scholar
  79. [79]
    S.K. Donaldson, An application of gauge theory to four-dimensionaltopology, J. Diff. Geom.18 (1983) 279 [INSPIRE].
  80. [80]
    S. K. Donaldson, The orientation of yang-mills moduli spaces and 4-manifold topology, J. Diff. Geom.26 (1987) 397.Google Scholar
  81. [81]
    J.W. Milnor and D. Husemoller, Symmetric bilinear forms, Springer, Berlin, Germany (1973).Google Scholar
  82. [82]
    P.C. Argyres and M. Martone, 4d \( \mathcal{N} \) = 2 theories with disconnected gauge groups, JHEP03 (2017) 145 [arXiv:1611.08602] [INSPIRE].
  83. [83]
    J. Conway and N. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften, Springer, Germany (1998).Google Scholar
  84. [84]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys.91 (2010) 167 [arXiv:0906.3219] [INSPIRE].
  85. [85]
    Y. Tachikawa, A brief review of the 2d/4d correspondences, J. Phys.A 50 (2017) 443012 [arXiv:1608.02964] [INSPIRE].
  86. [86]
    C. Cordova and D.L. Jafferis, Toda theory from six dimensions, JHEP12 (2017) 106 [arXiv:1605.03997] [INSPIRE].
  87. [87]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d superconformal index from q-deformed 2d Yang-Mills, Phys. Rev. Lett.106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].
  88. [88]
    A. Bawane, G. Bonelli, M. Ronzani and A. Tanzini, \( \mathcal{N} \) = 2 supersymmetric gauge theories on S 2× S 2and Liouville gravity, JHEP07 (2015) 054 [arXiv:1411.2762] [INSPIRE].
  89. [89]
    J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys.B 527 (1998) 581 [hep-th/9802168] [INSPIRE].
  90. [90]
    J.P. Serre, A course in arithmetic, Graduate Texts in Mathematics, Springer, Berlin Germany (1973).Google Scholar
  91. [91]
    J. H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms, Springer, Berlin Germany (2008).Google Scholar
  92. [92]
    J.A. Harvey and Y. Wu, Hecke relations in rational conformal field theory, JHEP09 (2018) 032 [arXiv:1804.06860] [INSPIRE].
  93. [93]
    V. Bouchard, T. Creutzig and A. Joshi, Hecke operators on vector-valued modular forms, SIGMA15 (2019) 041 [arXiv:1807.07703] [INSPIRE].
  94. [94]
    A. Amariti, C. Klare, D. Orlando and S. Reffert, The M-theory origin of global properties of gauge theories, Nucl. Phys.B 901 (2015) 318 [arXiv:1507.04743] [INSPIRE].
  95. [95]
    A. Amariti, D. Orlando and S. Reffert, Line operators from M-branes on compact Riemann surfaces, Nucl. Phys.B 913 (2016) 93 [arXiv:1603.03044] [INSPIRE].
  96. [96]
    A. Amariti, D. Orlando and S. Reffert, Phases of N = 2 necklace quivers, Nucl. Phys.B 926 (2018) 279 [arXiv:1604.08222] [INSPIRE].
  97. [97]
    I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Academic Press, U.S.A. (1989).Google Scholar
  98. [98]
    R.E. Borcherds, Monstrous moonshine and monstrous lie superalgebras, Inv. Math.109 (1992) 405.Google Scholar
  99. [99]
    A. Carney, E. Anastassia and P. Sarah, Powers of the eta-function and Hecke operators, Int. J. Number Th.08 (2012) 599.Google Scholar
  100. [100]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  101. [101]
    D.-E. Diaconescu, G.W. Moore and E. Witten, E 8gauge theory and a derivation of k-theory from M-theory, Adv. Theor. Math. Phys.6 (2003) 1031 [hep-th/0005090] [INSPIRE].
  102. [102]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys.B 463 (1996) 420 [hep-th/9511222] [INSPIRE].
  103. [103]
    S. Hellerman, D. Orlando and S. Reffert, String theory of the Omega deformation, JHEP01 (2012) 148 [arXiv:1106.0279] [INSPIRE].
  104. [104]
    S. Hellerman, D. Orlando and S. Reffert, The Omega Deformation From String and M-theory, JHEP07 (2012) 061 [arXiv:1204.4192] [INSPIRE].
  105. [105]
    A. Klemm et al., Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys.B 477 (1996) 746 [hep-th/9604034] [INSPIRE].
  106. [106]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4 − D N = 2 gauge theories: 1, Adv. Theor. Math. Phys.1 (1998) 53 [hep-th/9706110] [INSPIRE].
  107. [107]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  108. [108]
    A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].
  109. [109]
    S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].
  110. [110]
    S. Cecotti and M. Del Zotto, On Arnold’s 14 ‘exceptional’ N = 2 superconformal gauge theories, JHEP10 (2011) 099 [arXiv:1107.5747] [INSPIRE].
  111. [111]
    M. Del Zotto, More Arnold’s N = 2 superconformal gauge theories, JHEP11 (2011) 115 [arXiv:1110.3826] [INSPIRE].
  112. [112]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and 6d (1,0) \( 4{d}_{\left(\mathcal{N}=2\right)} \), JHEP11 (2015) 123 [arXiv:1504.08348] [INSPIRE].
  113. [113]
    D. Xie and S.-T. Yau, 4d N = 2 SCFT and singularity theory. Part I: classification, arXiv:1510.01324 [INSPIRE].
  114. [114]
    B. Chen et al., 4D \( \mathcal{N} \) = 2 SCFT and singularity theory. Part II: complete intersection, Adv. Theor. Math. Phys.21 (2017) 121 [arXiv:1604.07843] [INSPIRE].
  115. [115]
    Y. Wang, D. Xie, S.S.T. Yau and S.-T. Yau, 4d \( \mathcal{N} \) = 2 SCFT from complete intersection singularity, Adv. Theor. Math. Phys.21 (2017) 801 [arXiv:1606.06306] [INSPIRE].
  116. [116]
    B. Chen et al., 4d \( \mathcal{N} \) = 2 SCFT and singularity theory. Part III: rigid singularity, Adv. Theor. Math. Phys.22 (2018) 1885 [arXiv:1712.00464] [INSPIRE].
  117. [117]
    R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP02 (2008) 106 [arXiv:0709.4446] [INSPIRE].
  118. [118]
    E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys.B 300 (1988) 360 [INSPIRE].
  119. [119]
    R. Dijkgraaf and E.P. Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. Proc. Suppl.5 (1988) 87 [INSPIRE].
  120. [120]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.121 (1989) 351 [INSPIRE].
  121. [121]
    G.W. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys.123 (1989) 177 [INSPIRE].
  122. [122]
    M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys.B 408 (1993) 345 [hep-th/9305010] [INSPIRE].
  123. [123]
    H. Nakajima, Instantons on Ale spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J.76 (1994) 365.Google Scholar
  124. [124]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  125. [125]
    R. Switzer, Algebraic topology: homotopy and homology, Classics in Mathematics, Springer, Germany (2002).Google Scholar
  126. [126]
    J. McCleary, A user’s guide to spectral sequences, 2nd edition, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge U.K. (2000).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamU.K.
  2. 2.Department of PhysicsUniversity of MassachusettsAmherstU.S.A.

Personalised recommendations