Advertisement

Journal of High Energy Physics

, 2019:164 | Cite as

De Sitter cosmology on an expanding bubble

  • Souvik Banerjee
  • Ulf Danielsson
  • Giuseppe Dibitetto
  • Suvendu GiriEmail author
  • Marjorie Schillo
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

Constructing an explicit compactification yielding a metastable de Sitter (dS) vacuum in a UV consistent string theory is an incredibly difficult open problem. Motivated by this issue, as well as the conjecture that all non-supersymmetric AdS vacua must decay, we discuss the alternative possibility of realizing an effective four-dimensional dS cosmology on a codimension-one bubble wall separating two AdS5 vacua. The construction further elaborates on the scenario of arXiv:1807.01570, where the aforementioned cosmology arises due to a non-perturbative decay and is embedded in a five-dimensional bulk in a time­ dependent way. In this paper we discuss the relation between this scenario and the weak gravity conjecture and further develop the details of the four-dimensional cosmology. We provide a bulk interpretation for the dS temperature as the Unruh temperature experienced by an accelerated observer riding the bubble. A source of four-dimensional matter arises from a string cloud in the bulk, and we examine the consequences for the particle mass spectrum. Furthermore, we show how effective four-dimensional Einstein gravity on the bubble is obtained from the five-dimensional Gauss equation. We conclude by outlining some implications that this paradigm will have for holography, inflation, the standard model, and black holes.

Keywords

Phenomenology of Large extra dimensions Strings and branes phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys.D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv: 1806.08362 [INSPIRE].
  3. [3]
    S.K. Garg and C. Krishnan, Bounds on slow roll and the de Sitter swampland, arXiv: 1807.05193 [INSPIRE].
  4. [4]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter conjectures on the swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, Emergent de Sitter cosmology from decaying anti-de Sitter space, Phys. Rev. Lett.121 (2018) 261301 [arXiv: 1807 .01570] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    B. Freivogel and M. Kleban, Vacua morghulis, arXiv: 1610.04564 [INSPIRE].
  10. [10]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Cheung, J. Liu and G.N. Remmen, Proof of the weak gravity conjecture from black hole entropy, JHEP10 (2018) 004 [arXiv:1801.08546] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Montero, A holographic derivation of the weak gravity conjecture, JHEP03 (2019) 157 [arXiv: 1812 .03978] [INSPIRE].
  13. [13]
    N. Kaloper, Bent domain walls as brane worlds, Phys. Rev.D 60 (1999) 123506 [hep-th/9905210] [INSPIRE].
  14. [14]
    A. Amariti, C. Charmousis, D. Forcella, E. Kiritsis and F. Nitti, Brane cosmology and the self-tuning of the cosmological constant, arXiv:1904.02727 [INSPIRE].
  15. [15]
    E. Kiritsis and A. Tsouros, De Sitter versus anti de Sitter flows and the {super)gravity landscape, arXiv:1901.04546 [INSPIRE].
  16. [16]
    J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, De Sitter and anti-de Sitter branes in self-tuning models, JHEP11 (2018) 128 [arXiv: 1807 . 09794] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys.B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys.B 195 (1982) 481 [INSPIRE].
  19. [19]
    G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative instability of AdS 5 X S 5/Z k, Phys. Rev.D 77 (2008) 024004 [arXiv:0709.4262] [INSPIRE].
  20. [20]
    H. Ooguri and L. Spodyneiko, New Kaluza-Klein instantons and the decay of AdS vacua, Phys. Rev.D 96 (2017) 026016 [arXiv:1703.03105] [INSPIRE].
  21. [21]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP03 (2005) 061 [hep-th/0411183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    U. Danielsson and G. Dibitetto, Fate of stringy AdS vacua and the weak gravity conjecture, Phys. Rev.D 96 (2017) 026020 [arXiv:1611.01395] [INSPIRE].
  24. [24]
    U.H. Danielsson, G. Dibitetto and S.C. Vargas, A swamp of non-SUSY vacua, JHEP11 (2017) 152 [arXiv:1708.03293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP02 (2016) 140 [arXiv:1509.06374] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev.D 21 (1980) 3305 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M.C. Johnson and M. Larfors, An obstacle to populating the string theory landscape, Phys. Rev.D 78 (2008) 123513 [arXiv:0809.2604] [INSPIRE].
  28. [28]
    P. Narayan and S.P. Trivedi, On the stability of non-supersymmetric AdS vacua, JHEP07 (2010) 089 [arXiv:1002.4498] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal isolation in the AdS landscape, Phys. Rev.D 94 (2016) 126002 [arXiv:1605.09289] [INSPIRE].
  30. [30]
    D. Harlow, M etastability in anti de Sitter space, arXiv: 1003.5909 [INSPIRE].
  31. [31]
    S.P. Kashyap, S. Mondal, A. Sen and M. Verma, Surviving in a metastable de Sitter space-time, JHEP09 (2015) 139 [arXiv:1506.00772] [INSPIRE].
  32. [32]
    G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J.G. Russo and P.K. Townsend, Accelerating branes and brane temperature, Class. Quant. Grav.25 (2008) 175017 [arXiv:0805.3488] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    S. Deser and O. Levin, Accelerated detectors and temperature in (anti)-de Sitter spaces, Class. Quant. Grav.14 (1997) 1163 [gr-qc/9706018] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Kraus, Dynamics of anti-de Sitter domain walls, JHEP12 (1999) 011 [hep-th/9910149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P.S. Letelier, Clouds of strings in general relativity, Phys. Rev.D 20 (1979) 1294 [INSPIRE].
  37. [37]
    J. Stachel, Thickening the string. I. The string perfect dust, Phys. Rev.D 21 (1980) 2171 [INSPIRE].
  38. [38]
    S. Chakrabortty, Dissipativ e force on an external quark in heavy quark cloud, Phys. Lett.B 705 (2011) 244 [arXiv: 1108 .0165] [INSPIRE].
  39. [39]
    T.K. Dey, Phase transition of AdS-Schwarzschild black hole and gauge theory dual in the presence of external string cloud, Int. J. Mod. Phys.A 33 (2018) 1850193 [arXiv: 1711.07008] [INSPIRE].
  40. [40]
    S. Giombi and E. Perlmutter, Double-trace flows and the swampland, JHEP03 (2018) 026 [arXiv: 1709 . 09159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    J.L.F. Barbon and E. Rabinovici, Holography of AdS vacuum bubbles, JHEP04 (2010) 123 [arXiv: 1003 .4966] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    R. Antonelli, I. Basile and A. Bombini, AdS vacuum bubbles, holography and dual RG flows, Class. Quant. Grav.36 (2019) 045004 [arXiv:1806 .02289] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Bernamonti and B. Craps, D-brane potentials from multi-trace deformations in AdS/CFT, JHEP08 (2009) 112 [arXiv:0907.0889] [INSPIRE].
  44. [44]
    S.W. Hawking, T. Hertog and H.S. Reall, Brane new world, Phys. Rev.D 62 (2000) 043501 [hep-th/0003052] [INSPIRE].
  45. [45]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP07 (2004) 073 [hep-th/0406134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Hertog and G.T. Horowitz, Holographic description of AdS cosmologies, JHEP04 (2005) 005 [hep-th/0503071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP07 (2006) 013 [hep-th/0605158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett.97 (2006) 182301 [hep-ph/0605178] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev.D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].
  50. [50]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, propagators and holographic probes in AdS/CFT, JHEP01 (1999) 002 [hep-th/9812007] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys.B 563 (1999) 279 [hep-th/9905227] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP02 (2000) 039 [hep-th/9912209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT, JHEP04 (2018) 010 [arXiv:1611.03470] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    M. Taylor, TT deformations in general dimensions, arXiv: 1805 .10287 [INSPIRE].
  55. [55]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502. 01589] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    G. D'Amico, R. Gobbetti, M. Kleban and M. Schillo, D-brane scattering and annihilation, JHEP01 (2015) 050 [arXiv:1408 . 2540] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. D'Amico, R. Gobbetti, M. Kleban and M. Schillo, Unwinding inflation, JCAP03 (2013) 004 [arXiv:1211. 4589] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. D'Amico, R. Gobbetti, M. Kleban and M. Schillo, Large-scale anomalies from primordial dissipation, JCAP11 (2013) 013 [arXiv:1306 . 6872] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett.70 (1993) 2837 [hep-th/9301052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    U.H. Danielsson, G. Dibitetto and S. Giri, Black holes as bubbles of AdS, JHEP10 (2017) 171 [arXiv:1705 .10172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    U. Danielsson and S. Giri, Observational signatures from horizonless black shells imitating rotating black holes, JHEP07 (2018) 070 [arXiv: 1712. 00511] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations