From Minkowski to de Sitter in multifield no-scale models
Open Access
Regular Article - Theoretical PhysicsFirst Online:
- 39 Downloads
ABSTRACT
We show the uniqueness of superpotentials leading to Minkowski vacua of single-field no-scale supergravity models, and the construction of dS/AdS solutions using pairs of these single-field Minkowski superpotentials. We then extend the construction to two- and multifield no-scale supergravity models, providing also a geometrical interpretation. We also consider scenarios with additional twisted or untwisted moduli fields, and discuss how inflationary models can be constructed in this framework.
KEYWORDS
Supergravity Models Superstring Vacua Download
to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]PARTICLE DATA GROUP collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].Google Scholar
- [2]K.A. Olive, Inflation, Phys. Rept.190 (1990) 307 [INSPIRE].ADSCrossRefGoogle Scholar
- [3]A.D. Linde, Particl e physics and inflationary cosmology, Harwood, Chur, Switzerland (1990).CrossRefGoogle Scholar
- [4]D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept.314 (1999) 1 [hep-ph/9807278] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [5]J. Martin, C. Ringeval and V. Vennin, Encyclop(Edia inflationaris), Phys. Dark Univ.5-6 (2014) 75 [arXiv:1303.3787] [INSPIRE].CrossRefGoogle Scholar
- [6]J. Martin, C. Ringeval, R. Trotta and V. Vennin, The best inflationary models after Planck, JCAP03 (2014) 039 [arXiv:1312.3529] [INSPIRE].ADSMathSciNetGoogle Scholar
- [7]J. Martin, The observational status of cosmic inflation after Planck, Astrophys. Space Sci. Proc.45 (2016) 41 [arXiv:1502.05733], [INSPIRE].ADSCrossRefGoogle Scholar
- [8]H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept.110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
- [9]H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the Standard Model, Phys. Rept.117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
- [10]J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Cosmological inflation cries out for supersymmetry, Phys. Lett.B 118 (1982) 335 [INSPIRE].ADSCrossRefGoogle Scholar
- [11]E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev.D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].ADSGoogle Scholar
- [12]E.D. Stewart, Inflation, supergravity and superstrings, Phys. Rev.D 51 (1995) 6847 [hep-ph/9405389] [INSPIRE].ADSGoogle Scholar
- [13]D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept.314 (1999) 1 [hep-ph/9807278] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [14]E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally va nishing cosmological constant in N = 1 supergravity, Phys. Lett.B 133 (1983) 61 [INSPIRE].ADSCrossRefGoogle Scholar
- [15]J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric Standard Model, Phys. Lett.B 134 (1984) 429 [INSPIRE]. ADSCrossRefGoogle Scholar
- [16]A.B. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept.145 (1987) 1 [INSPIRE].ADSCrossRefGoogle Scholar
- [17]J.R. Ellis, C. Kounnas and D.V. Nanopoulos, Phenomenological SU(1,1) supergravity, Nucl. Phys.B 241 (1984) 406 [INSPIRE].ADSCrossRefGoogle Scholar
- [18]J. Ellis, B. Nagaraj, D.V. Nanopoulos and K.A. Olive, De Sitter vacua in no-scale supergravity, JHEP11 (2018) 110 [arXiv:1809.10114] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [19]E. Witten, Dimensional reduction of superstring models, Phys. Lett.B 155 (1985) 151 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [20]S. Ferrara and R. Kallosh, Seven-disk manifold, a-attractors and B modes, Phys. Rev.D 94 (2016) 126015 [arXiv:1610.04163] [INSPIRE].ADSMathSciNetGoogle Scholar
- [21]PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv: 1807.06209 [INSPIRE].
- [22]PLANCK collaboration, Planck 2018 results. X Constraints on inflation, arXiv: 1807.06211 [INSPIRE].
- [23]BICEP2 and KECK ARRAY collaborations, BICEP2 / Keck Array X: constraints on primordial gravitational waves using Planck , WMAP and new BICEP2/ Keck observations through the 2015 season, Phys. Rev. Lett.121 (2018) 221301 [arXiv:1810.05216] [INSPIRE].ADSCrossRefGoogle Scholar
- [24]A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett.B 91 (1980) 99 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [25]J. Ellis, D.V. Nanopoulos and K.A. Olive, No-scale supergravity realization of the Starobinsky model of inflation, Phys. Rev. Lett.111 (2013) 111301 [ Erratum ibid.111(2013) 129902] [arXiv:1305.1247] [INSPIRE].
- [26]A.S. Goncharov and A.D. Linde, A simple realization of the inflationary universe scenario in SU(1, 1) supergravity, Class. Quant. Grav.1 (1984) L75 [INSPIRE].ADSCrossRefGoogle Scholar
- [27]C. Kounnas and M. Quiros, A maximally symmetric no scale inflationary universe, Phys. Lett.B 151 (1985) 189 [INSPIRE].ADSCrossRefGoogle Scholar
- [28]J.R. Ellis, K. Enqvist, D.V. Nanopoulos, K.A. Olive and M. Srednicki, SU(N, 1) inflation, Phys. Lett.B 152 (1985) 175 [Erratum ibid.B 156 (1985) 452] [INSPIRE].
- [29]K. Enqvist, D.V. Nanopoulos and M. Quiros, Inflation from a ripple on a vanishing potential, Phys. Lett.B 159 (1985) 249 [INSPIRE].ADSCrossRefGoogle Scholar
- [30]P. Binetruy and M.K. Gaillard, Candidates for the inflaton field in superstring models, Phys. Rev.D 34 (1986) 3069 [INSPIRE].ADSGoogle Scholar
- [31]H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis in supergravity, Phys. Rev.D 50 (1994) R2356 [hep-ph/9311326] [INSPIRE].ADSGoogle Scholar
- [32]S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP03 (2008) 015 [arXiv:0801.4696] [INSPIRE].ADSCrossRefGoogle Scholar
- [33]S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King and P.M. Kostka, Solving the η-problem in hybrid inflation with Heisenberg symmetry and stabilized modulus, JCAP01 (2009) 040 [arXiv: 0808.2425] [INSPIRE].ADSCrossRefGoogle Scholar
- [34]S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King and P.M. Kostka, Chaotic inflation in supergravity with Heisenberg symmetry, Ph ys. Lett.B 679 (2009) 428 [arXiv:0905.0905] [INSPIRE].ADSCrossRefGoogle Scholar
- [35]R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP11 (2010) 011 [arXiv:1008.3375] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [36]R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev.D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
- [37]S. Antusch, K. Dutta, J. Erdmenger and S. Halter, Towards matter inflation in heterotic string theory, JHEP04 (2011) 065 [arXiv: 1102.0093] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [38]R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev.D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].ADSGoogle Scholar
- [39]T. Li, Z. Li and D.V. Nanopoulos, Supergravity inflation with broken shift symmetry and large tensor-to-scalar ratio, J CAP02 (2014) 028 [arXiv:1311.6770] [INSPIRE].ADSMathSciNetGoogle Scholar
- [40]W. Buchmuller, C. Wieck and M.W. Winkler, Supersymmetric moduli stabilization and high-scale inflation, Phys. Lett.B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [41]J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like inflationary models as avatars of no-scale supergravity, JCAP10 (2013) 009 [arXiv:1307.3537] [INSPIRE].ADSCrossRefGoogle Scholar
- [42]J. Ellis, D.V. Nanopoulos and K.A. Olive, From R2gravity to no-scale supergravity, Phys. Rev.D 97 (2018) 043530 [arXiv:1711.11051] [INSPIRE].ADSGoogle Scholar
- [43]J. Ellis, D.V. Nanopoulos, K.A. Olive and S. Verner, A general classification of Starobinsky-like inflationary avatars of SU (2, 1) /SU (2) X U (1) no-scale supergravity, JHEP03 (2019) 099 [arXiv:1812.02192] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [44]J. Ellis, D.V. Nanopoulos, K.A. Olive and S. Verner, Unified no-scale model of modulus fixing, inflation, supersymmetry breaking and dark energy, Phys. Rev.D 100 (2019) 025009 [arXiv:1903.05267] [INSPIRE].ADSGoogle Scholar
- [45]J. Ellis, D.V. Nanopoulos, K.A. Olive and S. Verner, Unified no-scale attractors, JCAP09 (2019) 040 [arXiv: 1906.10176] [INSPIRE].ADSCrossRefGoogle Scholar
- [46]M.C. Romao and S.F. King, Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term, JHEP07 (2017) 033 [arXiv:1703.08333] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [47]S.F. King and E. Perdomo, Starobinsky-like inflation and soft-SUSY breaking, JHEP 05 (2019) 211 [arXiv:1903.08448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [48]R. Kallosh and A. Linde, Superconformal generalizations of the Starobinsky model, JCAP06 (2013) 028 [arXiv: 1306.3214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [49]F. Farakos, A. Kehagias and A. Riotto, On the Starobinsky model of inflation from supergravity, Nucl. Phys.B 876 (2013) 187 [arXiv:1307.1137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [50]S. Ferrara, A. Kehagias and A. Riotto, The imaginary Starobinsky model, Fortsch. Phys.62 (2014) 573 [arXiv:1403.5531] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [51]S. Ferrara, A. Kehagias and A. Riotto, The imaginary Starobinsky model and higher curvature corrections, Fortsch. Phys.63 (2015) 2 [arXiv:1405.2353] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [52]R. Kallosh, A. Linde, B. Vercnocke and W. Chemissany, Is imaginary Starobinsky model real?, JCAP07 (2014) 053 [arXiv:1403.7189] [INSPIRE].ADSCrossRefGoogle Scholar
- [53]K. Hamaguchi, T. Moroi and T. Terada, Complexified Starobinsky inflation in supergravity in the light of recent BICEP2 result, Phys. Lett.B 733 (2014) 305 [arXiv:1403.7521] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [54]J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, Resurrecting quadratic inflation in no-scale supergravity in light of BICEP2, JCAP 05 (2014) 037 [arXiv:1403.7518] [INSPIRE].ADSCrossRefGoogle Scholar
- [55]J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, A no-scale inflationary model to fit them all, JCAP08 (2014) 044 [arXiv:1405.0271] [INSPIRE].ADSGoogle Scholar
- [56]T. Li, Z. Li and D.V. Nanopoulos, No-scale ripple inflation revisited, JCAP04 (2014) 018 [arXiv:1310.3331] [INSPIRE].ADSCrossRefGoogle Scholar
- [57]J. Ellis, D.V. Nanopoulos and K.A. Olive, A no-scale supergravity framework for sub-Planckian physics, Phys. Rev.D 89 (2014) 043502 [arXiv:1310.4770] [INSPIRE].ADSGoogle Scholar
- [58]C.P. Burgess, M. Cicoli and F. Quevedo, String inflation after Planck 2013, JCAP11 (2013) 003 [arXiv:1306.3512] [INSPIRE].ADSCrossRefGoogle Scholar
- [59]S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev.D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
- [60]W. Buchmuller, V. Domcke and C. Wieck, No-scale D-term inflation with stabilized moduli, Phys. Lett.B 730 (2014) 155 [arXiv:1309.3122] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [61]C. Pallis, Linking Starobinsky-type inflation in no-scale supergravity to MSSM, JCAP04 (2014) 024 [Erratum ibid.07 (2017) E01] [arXiv:1312.3623] [INSPIRE].
- [62]C. Pallis, Induced-gravity inflation in no-scale supergravity and beyond, JCAP08 (2014) 057 [arXiv:1403.5486] [INSPIRE].ADSCrossRefGoogle Scholar
- [63]I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett.B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [64]T. Li, Z. Li and D.V. Nanopoulos, Chaotic inflation in no-scale supergravity with string inspired moduli stabilization, Eur. Phys. J. C 75 (2015) 55 [arXiv:1405.0197] [INSPIRE].ADSCrossRefGoogle Scholar
- [65]W. Buchmuller, E. Dudas, L. Heurtier and C. Wieck, Large-field inflation and supersymmetry breaking, JHEP09 (2014) 053 [arXiv:1407.0253] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [66]J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, Two-field analysis of no-scale supergravity inflation, JCAP01 (2015) 010 [arXiv:1409.8197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [67]T. Terada, Y. Watanabe, Y. Yamada and J. Yokoyama, Reheating processes after Starobinsky inflation in old-minimal supergravity, JHEP02 (2015) 105 [arXiv:1411.6746] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [68]W. Buchmuller, E. Dudas, L. Heurtier, A. Westphal, C. Wieck and M.W. Winkler, Challenges for large-field inflation and moduli stabilization, JHEP04 (2015) 058 [arXiv:1501.05812] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [69]A.B. Lahanas and K. Tamvakis, Inflation in no-scale supergravity, Phys. Rev.D 91 (2015) 085001 [arXiv:1501.06547] [INSPIRE].ADSMathSciNetGoogle Scholar
- [70]D. Roest and M. Scalisi, Cosmological attractors from a-scale supergravity, Phys. Rev.D 92 (2015) 043525 [arXiv:1503.07909] [INSPIRE].ADSMathSciNetGoogle Scholar
- [71]J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, Phenomenological aspects of no-scale inflation models, JCAP 10 (2015) 003 [arXiv:1503.08867] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [72]J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, Calculations of inflaton decays and reheating: with applications to no-scale inflation models, JCAP 07 (2015) 050 [arXiv:1505.06986] [INSPIRE].ADSCrossRefGoogle Scholar
- [73]I. Dalianis and F. Farakos, On the initial conditions for inflation with plateau potentials: the R + R 2(super)gravity case, JCAP 07 (2015) 044 [arXiv:1502.01246] [INSPIRE].ADSCrossRefGoogle Scholar
- [74]I. Garg and S. Mohanty, No scale SU GRA SO(lO) derived Starobinsky model of inflation, Phys. Lett.B 751 (2015) 7 [arXiv:1504.07725] [INSPIRE].ADSCrossRefGoogle Scholar
- [75]E. Dudas and C. Wieck, Moduli backreaction and supersymmetry breaking in string-inspired inflation models, JHEP10 (2015) 062 [arXiv:1506.01253] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [76]M. Scalisi, Cosmological o:-attractors and de Sitter landscape, JHEP12 (2015) 134 [arXiv:1506.01368] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [77]S. Ferrara, A. Kehagias and M. Porrati, R 2supergravity, JHEP08 (2015) 001 [arXiv:1506.01566] [INSPIRE].ADSCrossRefGoogle Scholar
- [78]J. Ellis, M.A.G. Garcia, D.V. Nanopoulos and K.A. Olive, No-scale inflation, Class. Quant. Grav.33 (2016) 094001 [arXiv:1507.02308] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [79]A. Addazi and M. Yu. Khlopov, Dark matter and inflation in R + ζR2supergravity, Phys. Lett.B 766 (2017) 17 [arXiv:1612.06417] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [80]C. Pallis and N. Toumbas, Starobinsky inflation: from non-SUSY to SUGRA realizations, Adv. High E nergy Phys. 2017 (2017) 6759267 [arXiv:1612.09202] [INSPIRE].zbMATHGoogle Scholar
- [81]T. Kobayashi, O. Seto and T.H. Tatsuishi, Toward pole inflation and attractors in supergravity: chiral matter field inflation, PTEP2017 (2017) 123B04 [arXiv:1703.09960] [INSPIRE].Google Scholar
- [82]E. Dudas, T. Gherghetta, Y. Mambrini and K.A. Olive, Inflation and high-scale supersymmetry with an EeV gravitino, Phys. Rev.D 96 (2017) 115032 [arXiv:1710.07341] [INSPIRE].ADSGoogle Scholar
- [83]I. Garg and S. Mohanty, No-scale SUGRA inflation and type-I seesaw, Int. J. Mod. Phys.A 33 (2018) 1850127 [arXiv:1711.01979] [INSPIRE].ADSCrossRefGoogle Scholar
- [84]W. Ahmed and A. Karozas, Inflation from a no-scale supersymmetric SU(4)c x SU(2)L x SU(2)Rmodel, Phys. Rev.D 98 (2018) 023538 [arXiv:1804.04822] [INSPIRE].ADSGoogle Scholar
- [85]Y. Cai, R. Deen, B.A. Ovrut and A. Purves, Perturbative reheating in Sneutrino-Higgs cosmology, JHEP09 (2018) 001 [arXiv:1804.07848] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [86]S. Khalil, A. Moursy, A.K. Saha and A. Sil, U(1)R inspired inflation model in no-scale supergravity, Phys. Rev.D 99 (2019) 095022 [arXiv:1810.06408] [INSPIRE].ADSMathSciNetGoogle Scholar
- [87]J. Ellis, M.A.G. Garcia, N. Nagata, D.V. Nanopoulos and K.A. Olive, Starobinsky-lik e inflation and neutrino masses in a no-scale 80(10) model, JCAP11 (2016) 018 [arXiv:1609.05849] [INSPIRE].ADSCrossRefGoogle Scholar
- [88]J. Ellis, M.A.G. Garcia, N. Nagata, D.V. Nanopoulos and K.A. Olive, Starobinsky-lik e inflation, supercosmology and neutrino masses in no-scale flipped SU(5), JCAP 07 (2017) 006 [arXiv:1704.07331] [INSPIRE].ADSCrossRefGoogle Scholar
- [89]J. Ellis, M.A.G. Garcia, N. Nagata, D.V. Nanopoulos and K.A. Olive, Symmetry breaking and reheating after inflation in no-scale flipped SU(5), JCAP 04 (2019) 009 [arXiv:1812.08184] [INSPIRE].ADSCrossRefGoogle Scholar
- [90]J.R. Ellis, C. Kounnas and D.V. Nanopoulos, No scale supersymmetric GUTs, Nucl. Phys.B 247 (1984) 373 [INSPIRE].ADSCrossRefGoogle Scholar
- [91]R. Kallosh, A. Linde and D. Roest, Superconformal inflationary cx-attractors, JHEP11 (2013) 198 [arXiv:1311.0472] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [92]A. Linde, Single-field cx-attractors, JCAP05 (2015) 003 [arXiv:1504.00663] [INSPIRE].ADSCrossRefGoogle Scholar
- [93]J.R. Ellis, C. Kounnas and D.V. Nanopoulos, No scale supergravity models with a Planck mass gravitino, Phys. Lett.B 143 (1984) 410 [INSPIRE].ADSCrossRefGoogle Scholar
- [94]J. Ellis, M.A.G. Garcia, N. Nagata, D.V. Nanopoulos and K.A. Olive, Cosmology with a master coupling in flipped SU(5) X U(1): the λ6 universe, Phys. Lett.B 797 (2019) 134864 [arXiv:1906.08483] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [95]J. Ellis, M.A.G. García, N. Nagata, D.V. Nanopoulos and K.A. Olive, Phenomenological aspects of the λ6 universe in flipped SU(5) X U(1), in preparation.Google Scholar
- [96]G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].
Copyright information
© The Author(s) 2019