Advertisement

Journal of High Energy Physics

, 2019:150 | Cite as

The two faces of T-branes

  • Iosif Bena
  • Johan Blåbäck
  • Raffaele Savelli
  • Gianluca ZoccaratoEmail author
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We establish a brane-brane duality connecting T-branes to collections of ordinary D-branes. T-branes are intrinsically non-Abelian brane configurations with worldvolume flux, whereas their duals consist of Abelian brane systems that encode the T-brane data in their curvature. We argue that the new Abelian picture provides a reliable description of T-branes when their non-Abelian fields have large expectation values in string units. To confirm this duality, we match the energy density and all the electromagnetic couplings on both sides. A key step in this derivation is a non-trivial factorization of the symmetrized-trace non-Abelian Dirac-Born-Infeld action when evaluated on solutions of the α′ -corrected Hitchin system.

Keywords

D-branes String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11238_MOESM1_ESM.gz (130 kb)
ESM 1 (GZ 129 kb)

References

  1. [1]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP07 (2011) 030 [arXiv:1010.5780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys.8 (2004) 813 [hep-th/0309270] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, JHEP08 (2010) 036 [arXiv:0910.2762] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP05 (2011) 023 [arXiv:1101.2455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. Donagi and M. Wijnholt, Gluing branes, I, JHEP05 (2013) 068 [arXiv:1104.2610] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. Donagi and M. Wijnholt, Gluing branes II: flavour physics and string duality, JHEP05 (2013) 092 [arXiv:1112.4854] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Font, F. Marchesano, D. Regalado and G. Zoccarato, Up-type quark masses in SU(5) F-theory models, JHEP11 (2013) 125 [arXiv:1307.8089] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d conformal matter, JHEP02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP09 (2015) 161 [arXiv:1410.4178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP09 (2015) 100 [arXiv:1410.4867] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    F. Marchesano, D. Regalado and G. Zoccarato, Yukawa hierarchies at the point of E 8in F-theory, JHEP04 (2015) 179 [arXiv:1503.02683] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP03 (2016) 141 [arXiv:1512.04558] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Carta, F. Marchesano and G. Zoccarato, Fitting fermion masses and mixings in F-theory GUTs, JHEP03 (2016) 126 [arXiv:1512.04846] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.J. Heckman, T. Rudelius and A. Tomasiello, 6D RG flows and nilpotent hierarchies, JHEP07 (2016) 082 [arXiv:1601.04078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP07 (2016) 093 [arXiv:1603.00062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Bena, J. Blåbäck, R. Minasian and R. Savelli, There and back again: a T-brane’s tale, JHEP11 (2016) 179 [arXiv:1608.01221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    F. Marchesano and S. Schwieger, T-branes and 𝛼′-corrections, JHEP11 (2016) 123 [arXiv:1609.02799] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Mekareeya, T. Rudelius and A. Tomasiello, T-branes, anomalies and moduli spaces in 6D SCFTs, JHEP10 (2017) 158 [arXiv:1612.06399] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.M. Ashfaque, Monodromic T-branes and the SO(10)GUT , arXiv:1701.05896 [INSPIRE].
  21. [21]
    L.B. Anderson, J.J. Heckman, S. Katz and L.P. Schaposnik, T-branes at the limits of geometry, JHEP10 (2017) 058 [arXiv:1702.06137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    I. Bena, J. Blåbück and R. Savelli, T-branes and matrix models, JHEP06 (2017) 009 [arXiv:1703.06106] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Collinucci, S. Giacomelli and R. Valandro, T-branes, monopoles and S-duality, JHEP10 (2017) 113 [arXiv:1703.09238] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Cicoli, I. Garcìa-Etxebarria, C. Mayrhofer, F. Quevedo, P. Shukla and R. Valandro, Global orientifolded quivers with inflation, JHEP11 (2017) 134 [arXiv:1706.06128] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    F. Marchesano, R. Savelli and S. Schwieger, Compact T-branes, JHEP09 (2017) 132 [arXiv:1707.03797] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    L.B. Anderson, L. Fredrickson, M. Esole and L.P. Schaposnik, Singular geometry and Higgs bundles in string theory, SIGMA14 (2018) 037 [arXiv:1710.08453] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  27. [27]
    F. Apruzzi, J.J. Heckman, D.R. Morrison and L. Tizzano, 4D gauge theories with conformal matter, JHEP09 (2018) 088 [arXiv:1803.00582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Cvetǐc, J.J. Heckman and L. Lin, Towards exotic matter and discrete non-Abelian symmetries in F-theory, JHEP11 (2018) 001 [arXiv:1806.10594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J.J. Heckman, T. Rudelius and A. Tomasiello, Fission, fusion and 6D RG flows, JHEP02 (2019) 167 [arXiv:1807.10274] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    F. Apruzzi, F. Hassler, J.J. Heckman and T.B. Rochais, Nilpotent networks and 4D RG flows, JHEP05 (2019) 074 [arXiv:1808.10439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    F. Carta, S. Giacomelli and R. Savelli, SUSY enhancement from T-branes, JHEP12 (2018) 127 [arXiv:1809.04906] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    F. Marchesano, R. Savelli and S. Schwieger, T-branes and defects, JHEP04 (2019) 110 [arXiv:1902.04108] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R.C. Myers, Dielectric branes, JHEP12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev.D 61 (2000) 106009 [hep-th/9911136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N.J. Hitchin, The selfduality equations on a Riemann surface, Proc. Lond. Math. Soc.55 (1987) 59 [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    A.A. Tseytlin, On non-Abelian generalization of Born-Infeld action in string theory, Nucl. Phys.B 501 (1997) 41 [hep-th/9701125] [INSPIRE].
  37. [37]
    A. Hashimoto and W. Taylor, Fluctuation spectra of tilted and intersecting D-branes from the Born-Infeld action, Nucl. Phys.B 503 (1997) 193 [hep-th/9703217] [INSPIRE].
  38. [38]
    P. Bain, On the non-Abelian Born-Infeld action, in Proceedings, NATO Advanced Study Institute on Progress in String Theory and M-theory, Cargese, France, 24 May–5 June 1999, pg. 313 [hep-th/9909154] [INSPIRE].
  39. [39]
    R.C. Myers, Non-Abelian phenomena on D-branes, Class. Quant. Grav.20 (2003) S347 [hep-th/0303072] [INSPIRE].
  40. [40]
    I. Bena, J. Blåbäck, R. Savelli and G. Zoccarato, Supplementary mathematica notebook, https://gitlab.com/johanbluecreek/T-brane duality.
  41. [41]
    M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav.14 (1997) 47 [hep-th/9605033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    Y.-K.E. Cheung and Z. Yin, Anomalies, branes and currents, Nucl. Phys.B 517 (1998) 69 [hep-th/9710206] [INSPIRE].
  43. [43]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP11 (1997) 002 [hep-th/9710230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    C.P. Bachas, P. Bain and M.B. Green, Curvature terms in D-brane actions and their M-theory origin, JHEP05 (1999) 011 [hep-th/9903210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    R. Minasian and A. Tomasiello, Variations on stability, Nucl. Phys.B 631 (2002) 43 [hep-th/0104041] [INSPIRE].
  46. [46]
    A. Butti, D. Forcella, L. Martucci, R. Minasian, M. Petrini and A. Zaffaroni, On the geometry and the moduli space of beta-deformed quiver gauge theories, JHEP07 (2008) 053 [arXiv:0712.1215] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Marchesano, P. McGuirk and G. Shiu, Chiral matter wavefunctions in warped compactifications, JHEP05 (2011) 090 [arXiv:1012.2759] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueUniversité Paris Saclay, CEA, CNRS, Orme des MerisiersGif sur YvetteFrance
  2. 2.Dipartimento di FisicaUniversità di Roma “Tor Vergata” & INFN — Sezione di Roma2RomaItaly
  3. 3.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations