Advertisement

Journal of High Energy Physics

, 2019:141 | Cite as

Rényi entanglement entropies for the compactified massless boson with open boundary conditions

  • Alvise BastianelloEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate the Rényi entanglement entropies for the one-dimensional massless free boson compactified on a circle, which describes the low energy sector of several interacting many-body 1d systems (Luttinger Liquid). We focus on systems on a finite segment with open boundary conditions and possible inhomogeneities in the couplings. We provide expressions for the Rényi entropies of integer indices in terms of Fredholm determinant-like expressions. Within the homogeneous case, we reduce the problem to the solution of linear integral equations and the computation of Riemann Theta functions. We mainly focus on a single interval in the middle of the system, but results for generic bipartitions are given as well.

Keywords

Conformal Field Theory Integrable Field Theories Boundary Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.80 (2008) 517 [quant-ph/0703044] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys.A 42 (2009) 500301.MathSciNetzbMATHGoogle Scholar
  3. [3]
    N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rept.646 (2016) 1 [arXiv:1512.03388] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field theories, J. Stat. Mech.1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  6. [6]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    N. Schuch, M.M. Wolf, F. Verstraete and J.I. Cirac, Entropy scaling and simulability by matrix product states, Phys. Rev. Lett.100 (2008) 030504 [arXiv:0705.0292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    N. Schuch, M.M. Wolf, K.G.H. Vollbrecht and J.I. Cirac, On entropy growth and the hardness of simulating time evolution, New J. Phys.10 (2008) 033032 [arXiv:0801.2078].ADSCrossRefGoogle Scholar
  10. [10]
    Á. Perales and G. Vidal, Entanglement growth and simulation efficiency in one-dimensional quantum lattice systems, Phys. Rev.A 78 (2008) 042337 [arXiv:0711.3676].ADSCrossRefGoogle Scholar
  11. [11]
    P. Hauke, F.M. Cucchietti, L. Tagliacozzo, I. Deutsch and M. Lewenstein, Can one trust quantum simulators?, Rept. Prog. Phys.75 (2012) 082401 [arXiv:1109.6457].ADSCrossRefGoogle Scholar
  12. [12]
    J. Dubail, Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1 + 1d, J. Phys.A 50 (2017) 234001 [arXiv:1612.08630] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    E. Leviatan, F. Pollmann, J.H. Bardarson and E. Altman, Quantum thermalization dynamics with matrix-product states, arXiv:1702.08894 [INSPIRE].
  14. [14]
    R. Islam et al., Measuring entanglement entropy in a quantum many-body system, Nature528 (2015) 77.ADSCrossRefGoogle Scholar
  15. [15]
    A.M. Kaufman et al., Quantum thermalization through entanglement in an isolated many-body system, Science353 (2016) 794 [arXiv:1603.04409].ADSCrossRefGoogle Scholar
  16. [16]
    A.J. Daley, H. Pichler, J. Schachenmayer and P. Zoller, Measuring entanglement growth in quench dynamics of bosons in an optical lattice, Phys. Rev. Lett.109 (2012) 020505 [arXiv:1205.1521].ADSCrossRefGoogle Scholar
  17. [17]
    J. Unmuth-Yockey, J. Zhang, P.M. Preiss, L.-P. Yang, S.-W. Tsai and Y. Meurice, Probing the conformal Calabrese-Cardy scaling with cold atoms, Phys. Rev.A 96 (2017) 023603 [arXiv:1611.05016] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Elben, B. Vermersch, M. Dalmonte, J. Cirac and P. Zoller, Rényi entropies from random quenches in atomic Hubbard and spin models, Phys. Rev. Lett.120 (2018) 050406 [arXiv:1709.05060].ADSCrossRefGoogle Scholar
  19. [19]
    A. Lukin et al., Probing entanglement in a many-body-localized system, Science364 (2019) 256 [arXiv:1805.09819].ADSGoogle Scholar
  20. [20]
    T. Brydges et al., Probing Rényi entanglement entropy via randomized measurements, Science364 (2019) 260 [arXiv:1806.05747].ADSGoogle Scholar
  21. [21]
    P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev.A 78 (2008) 032329 [arXiv:0806.3059].ADSCrossRefGoogle Scholar
  22. [22]
    V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy formula in 1 + 1 dimensional conformal field theories, J. Phys.A 51 (2018) 024001 [arXiv:1707.07532] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    H. Li and F. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states, Phys. Rev. Lett.101 (2008) 010504 [arXiv:0805.0332] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer Science & Business Media, Springer, New York, NY, U.S.A. (1997) [INSPIRE].
  26. [26]
    F. Haldane, Demonstration of the “Luttinger liquid” character of Bethe-ansatz-soluble models of 1 − D quantum fluids, Phys. Lett.A 81 (1981) 153.ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    F.D.M. Haldane, ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas, J. Phys.C 14 (1981) 2585 [INSPIRE].ADSGoogle Scholar
  28. [28]
    F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids, Phys. Rev. Lett.47 (1981) 1840 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.A. Cazalilla, Bosonizing one-dimensional cold atomic gases, J. Phys.B 37 (2004) S1 [cond-mat/0307033].ADSGoogle Scholar
  30. [30]
    T. Giamarchi, Quantum physics in one dimension, vol. 121, Oxford University Press, Oxford, U.K. (2004).zbMATHGoogle Scholar
  31. [31]
    A.M. Tsvelik, Quantum field theory in condensed matter physics, Cambridge University Press, Cambridge, U.K. (2007).zbMATHGoogle Scholar
  32. [32]
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac and M. Rigol, One dimensional bosons: from condensed matter systems to ultracold gases, Rev. Mod. Phys.83 (2011) 1405 [arXiv:1101.5337].ADSCrossRefGoogle Scholar
  33. [33]
    P. Ruggiero, E. Tonni and P. Calabrese, Entanglement entropy of two disjoint intervals and the recursion formula for conformal blocks, J. Stat. Mech.1811 (2018) 113101 [arXiv:1805.05975] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    M.A. Rajabpour and F. Gliozzi, Entanglement entropy of two disjoint intervals from fusion algebra of twist fields, J. Stat. Mech.1202 (2012) P02016 [arXiv:1112.1225] [INSPIRE].MathSciNetGoogle Scholar
  35. [35]
    M. Caraglio and F. Gliozzi, Entanglement entropy and twist fields, JHEP11 (2008) 076 [arXiv:0808.4094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Furukawa, V. Pasquier and J. Shiraishi, Mutual information and compactification radius in a c = 1 critical phase in one dimension, Phys. Rev. Lett.102 (2009) 170602 [arXiv:0809.5113] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev.D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies, J. Stat. Mech.1302 (2013) P02022 [arXiv:1209.2428] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP03 (2009) 048 [arXiv:0812.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P. Facchi, G. Florio, G. Parisi and S. Pascazio, Maximally multipartite entangled states, Phys. Rev.A 77 (2008) 060304 [arXiv:0710.2868].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint blocks in critical Ising models, Phys. Rev.B 81 (2010) 060411 [arXiv:0910.0706] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint intervals in c = 1 theories, J. Stat. Mech.1106 (2011) P06012 [arXiv:1103.3166] [INSPIRE].MathSciNetGoogle Scholar
  43. [43]
    F. Iglói and I. Peschel, On reduced density matrices for disjoint subsystems, EPL89 (2010) 40001 [arXiv:0910.5671].ADSCrossRefGoogle Scholar
  44. [44]
    M. Fagotti and P. Calabrese, Entanglement entropy of two disjoint blocks in XY chains, J. Stat. Mech.1004 (2010) P04016 [arXiv:1003.1110] [INSPIRE].Google Scholar
  45. [45]
    P. Calabrese, Entanglement entropy in conformal field theory: new results for disconnected regions, J. Stat. Mech.1009 (2010) P09013 [INSPIRE].MathSciNetGoogle Scholar
  46. [46]
    M. Fagotti, New insights into the entanglement of disjoint blocks, EPL97 (2012) 17007 [arXiv:1110.3770] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Chen and J.-J. Zhang, On short interval expansion of Rényi entropy, JHEP11 (2013) 164 [arXiv:1309.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Chen, J. Long and J.-J. Zhang, Holographic Rényi entropy for CFT with W symmetry, JHEP04 (2014) 041 [arXiv:1312.5510] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    F. Ares, J.G. Esteve and F. Falceto, Entanglement of several blocks in fermionic chains, Phys. Rev.A 90 (2014) 062321 [arXiv:1406.1668].ADSCrossRefGoogle Scholar
  50. [50]
    A. Coser, E. Tonni and P. Calabrese, Spin structures and entanglement of two disjoint intervals in conformal field theories, J. Stat. Mech.1605 (2016) 053109 [arXiv:1511.08328] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  51. [51]
    Z. Li and J.-J. Zhang, On one-loop entanglement entropy of two short intervals from OPE of twist operators, JHEP05 (2016) 130 [arXiv:1604.02779] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    F. Liu and X. Liu, Two intervals Rényi entanglement entropy of compact free boson on torus, JHEP01 (2016) 058 [arXiv:1509.08986] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  53. [53]
    A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys.A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].ADSzbMATHGoogle Scholar
  54. [54]
    S. Mukhi, S. Murthy and J.-Q. Wu, Entanglement, replicas and thetas, JHEP01 (2018) 005 [arXiv:1706.09426] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    T. Dupic, B. Estienne and Y. Ikhlef, Entanglement entropies of minimal models from null-vectors, SciPost Phys.4 (2018) 031 [arXiv:1709.09270] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.C. Xavier, F.C. Alcaraz and G. Sierra, Equipartition of the entanglement entropy, Phys. Rev.B 98 (2018) 041106 [arXiv:1804.06357] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech.0911 (2009) P11001 [arXiv:0905.2069] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  58. [58]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech.1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].MathSciNetGoogle Scholar
  59. [59]
    A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech.1401 (2014) P01008 [arXiv:1309.2189] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].
  61. [61]
    J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys.32 (1964) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A.C. Hewson, The Kondo problem to heavy fermions (volume 2), Cambridge University Press, Cambridge, U.K. (1997).Google Scholar
  63. [63]
    I. Affleck, N. Laflorencie and E.S. Sørensen, Entanglement entropy in quantum impurity systems and systems with boundaries, J. Phys.A 42 (2009) 504009 [arXiv:0906.1809].MathSciNetzbMATHGoogle Scholar
  64. [64]
    H.-Q. Zhou, T. Barthel, J.O. Fjærestad and U. Schollwöck, Entanglement and boundary critical phenomena, Phys. Rev.A 74 (2006) 050305 [cond-mat/0511732].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett.67 (1991) 161 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech.0507 (2005) P07007 [cond-mat/0505563].zbMATHGoogle Scholar
  67. [67]
    M. Fagotti and P. Calabrese, Universal parity effects in the entanglement entropy of XX chains with open boundary conditions, J. Stat. Mech.1101 (2011) P01017 [arXiv:1010.5796] [INSPIRE].MathSciNetGoogle Scholar
  68. [68]
    P. Calabrese, M. Mintchev and E. Vicari, The entanglement entropy of one-dimensional gases, Phys. Rev. Lett.107 (2011) 020601 [arXiv:1105.4756] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    P. Calabrese, M. Mintchev and E. Vicari, The entanglement entropy of 1D systems in continuous and homogenous space, J. Stat. Mech.1109 (2011) P09028 [arXiv:1107.3985] [INSPIRE].Google Scholar
  70. [70]
    U. Schollwöck, Matrix product state algorithms: DMRG, TEBD and relatives, in Strongly correlated systems, Springer, Berlin, Heidelberg, Germany (2013), pg. 67.
  71. [71]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys.A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  72. [72]
    J. Dubail, J.-M. Stéphan, J. Viti and P. Calabrese, Conformal field theory for inhomogeneous one-dimensional quantum systems: the example of non-interacting Fermi gases, SciPost Phys.2 (2017) 002 [arXiv:1606.04401] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    J. Dubail, J.-M. Stéphan and P. Calabrese, Emergence of curved light-cones in a class of inhomogeneous Luttinger liquids, SciPost Phys.3 (2017) 019 [arXiv:1705.00679].ADSCrossRefGoogle Scholar
  74. [74]
    Y. Brun and J. Dubail, The inhomogeneous Gaussian free field, with application to ground state correlations of trapped 1d Bose gases, SciPost Phys.4 (2018) 037 [arXiv:1712.05262].ADSCrossRefGoogle Scholar
  75. [75]
    Y. Brun and J. Dubail, One-particle density matrix of trapped one-dimensional impenetrable bosons from conformal invariance, SciPost Phys.2 (2017) 012 [arXiv:1701.02248].ADSCrossRefGoogle Scholar
  76. [76]
    V. Eisler and D. Bauernfeind, Front dynamics and entanglement in the XXZ chain with a gradient, Phys. Rev.B 96 (2017) 174301 [arXiv:1708.05187] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    P. Ruggiero, Y. Brun and J. Dubail, Conformal field theory on top of a breathing one-dimensional gas of hard core bosons, SciPost Phys.6 (2019) 051 [arXiv:1901.08132] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S. Murciano, P. Ruggiero and P. Calabrese, Entanglement and relative entropies for low-lying excited states in inhomogeneous one-dimensional quantum systems, J. Stat. Mech.2019 (2019) 034001 [arXiv:1810.02287] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  79. [79]
    M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys.B 495 (1997) 533 [cond-mat/9612187] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    I. Affleck, Edge magnetic field in the XXZ spin-1/2 chain, J. Phys.A 31 (1998) 2761 [cond-mat/9710221].ADSMathSciNetzbMATHGoogle Scholar
  81. [81]
    C.A. Agon, M. Headrick, D.L. Jafferis and S. Kasko, Disk entanglement entropy for a Maxwell field, Phys. Rev.D 89 (2014) 025018 [arXiv:1310.4886] [INSPIRE].ADSGoogle Scholar
  82. [82]
    C. De Nobili, A. Coser and E. Tonni, Entanglement entropy and negativity of disjoint intervals in CFT: some numerical extrapolations, J. Stat. Mech.1506 (2015) P06021 [arXiv:1501.04311] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  83. [83]
    A. Peres, Separability criterion for density matrices, Phys. Rev. Lett.77 (1996) 1413 [quant-ph/9604005] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    K. Zyczkowski, P. Horodecki, A. Sanpera and M. Lewenstein, On the volume of the set of mixed entangled states, Phys. Rev.A 58 (1998) 883 [quant-ph/9804024] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    K. Zyczkowski, On the volume of the set of mixed entangled states. 2, Phys. Rev.A 60 (1999) 3496 [quant-ph/9902050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    J. Lee, M.S. Kim, Y.J. Park and S. Lee, Partial teleportation of entanglement in a noisy environment, J. Mod. Opt.47 (2000) 2151 [quant-ph/0003060].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    J. Eisert and M.B. Plenio, A comparison of entanglement measures, J. Mod. Opt.46 (1999) 145 [quant-ph/9807034] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    G. Vidal and R.F. Werner, Computable measure of entanglement, Phys. Rev.A 65 (2002) 032314 [quant-ph/0102117] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M.B. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex, Phys. Rev. Lett.95 (2005) 090503 [quant-ph/0505071] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett.109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: a field theoretical approach, J. Stat. Mech.1302 (2013) P02008 [arXiv:1210.5359] [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations