Advertisement

Journal of High Energy Physics

, 2019:136 | Cite as

H + 1 jet production revisited

  • John M. CampbellEmail author
  • R. Keith Ellis
  • Satyajit Seth
Open Access
Regular Article - Theoretical Physics

Abstract

We revisit the next-to-next-to-leading order (NNLO) calculation of the Higgs boson+1 jet production process, calculated in the mt → ∞ effective field theory. We perform a detailed comparison of the result calculated using the jettiness slicing method, with published results obtained using subtraction methods. The results of the jettiness calculation agree with the two previous subtraction calculations at benchmark points. The performance of the jettiness slicing approach is greatly improved by adopting a definition of 1-jettiness that accounts for the boost of the Born system. Nevertheless, the results demonstrate that power corrections in the jettiness slicing method remain significant. At large transverse momentum the effect of power corrections is much reduced, as expected.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP06 (2013) 072 [arXiv:1302.6216] [INSPIRE].
  2. [2]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett.B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].
  3. [3]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett.115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].
  4. [4]
    R. Boughezal et al., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett.B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].
  5. [5]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev.D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].
  6. [6]
    X. Chen et al., NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP10 (2016) 066 [arXiv:1607.08817] [INSPIRE].
  7. [7]
    X. Chen et al., Precise QCD description of the Higgs boson transverse momentum spectrum, Phys. Lett.B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].
  8. [8]
    W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N 3LL+NNLO, JHEP12 (2018) 132 [arXiv:1805.05916] [INSPIRE].
  9. [9]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  10. [10]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett.115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].
  11. [11]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness subtractions for NNLO QCD calculations, JHEP09 (2015) 058 [arXiv:1505.04794] [INSPIRE].
  12. [12]
    I. Moult et al., Subleading power corrections for N-jettiness subtractions, Phys. Rev.D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].
  13. [13]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP07 (2011) 018 [arXiv:1105.0020] [INSPIRE].
  14. [14]
    J.M. Campbell, R.K. Ellis and W.T. Giele, A multi-threaded version of MCFM, Eur. Phys. J.C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].
  15. [15]
    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J.C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].
  16. [16]
    J.M. Campbell, R.K. Ellis and C. Williams, Direct photon production at next-to–next-to-leading order, Phys. Rev. Lett.118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].
  17. [17]
    J.M. Campbell, R.K. Ellis and C. Williams, Driving missing data at the LHC: NNLO predictions for the ratio of γ + j and Z + j, Phys. Rev.D 96 (2017) 014037 [arXiv:1703.10109] [INSPIRE].
  18. [18]
    J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The quark beam function at two loops, JHEP04 (2014) 113 [arXiv:1401.5478] [INSPIRE].
  19. [19]
    J. Gaunt, M. Stahlhofen and F.J. Tackmann, The gluon beam function at two loops, JHEP08 (2014) 020 [arXiv:1405.1044] [INSPIRE].
  20. [20]
    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{\mathrm{B}} \)→ X sγ decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett.B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].
  21. [21]
    T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett.B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].
  22. [22]
    J.M. Campbell, R.K. Ellis, R. Mondini and C. Williams, The NNLO QCD soft function for 1-jettiness, Eur. Phys. J.C 78 (2018) 234 [arXiv:1711.09984] [INSPIRE].
  23. [23]
    R. Boughezal, X. Liu and F. Petriello, N -jettiness soft function at next-to-next-to-leading order, Phys. Rev.D 91 (2015) 094035 [arXiv:1504.02540] [INSPIRE].
  24. [24]
    G. Bell, B. Dehnadi, T. Mohrmann and R. Rahn, Automated calculation of N -jet soft functions, PoS(LL2018)044 [arXiv:1808.07427] [INSPIRE].
  25. [25]
    T. Becher, G. Bell, C. Lorentzen and S. Marti, Transverse-momentum spectra of electroweak bosons near threshold at NNLO, JHEP02 (2014) 004 [arXiv:1309.3245] [INSPIRE].
  26. [26]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-loop QCD corrections to the helicity amplitudes for H → 3 partons, JHEP02 (2012) 056 [arXiv:1112.3554] [INSPIRE].
  27. [27]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N -jet production at hadron colliders, Phys. Rev.D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].
  28. [28]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs boson plus one jet at next-to-next-to-leading logarithmic order, Phys. Rev.D 88 (2013) 054031 [arXiv:1302.0846] [INSPIRE].
  29. [29]
    R. Boughezal et al., Z -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett.116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].
  30. [30]
    J.M. Campbell, R.K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, JHEP06 (2016) 179 [arXiv:1601.00658] [INSPIRE].
  31. [31]
    J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP07 (2016) 148 [arXiv:1603.02663] [INSPIRE].
  32. [32]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  33. [33]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev.D 59 (1999) 014020 [Erratum ibid.D 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].
  34. [34]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys.B 359 (1991) 283.Google Scholar
  35. [35]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \( {\alpha}_S^4 \), Phys. Rev. Lett.79 (1997) 353 [hep-ph/9705240] [INSPIRE].
  36. [36]
    M.A. Ebert et al., Power corrections for N -jettiness subtractions at \( \mathcal{O} \) (αs ), JHEP12 (2018) 084 [arXiv:1807.10764] [INSPIRE].
  37. [37]
    F. Caola, private communication.Google Scholar
  38. [38]
    CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett.120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].
  39. [39]
    S.P. Jones, M. Kerner and G. Luisoni, Next-to-leading-order QCD corrections to Higgs boson plus jet production with full top-quark mass dependence, Phys. Rev. Lett.120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].
  40. [40]
    R. Boughezal, X. Liu and F. Petriello, Power corrections in the N-jettiness subtraction scheme, JHEP03 (2017) 160 [arXiv:1612.02911] [INSPIRE].
  41. [41]
    I. Moult et al., N-jettiness subtractions for gg → H at subleading power, Phys. Rev.D 97 (2018) 014013 [arXiv:1710.03227] [INSPIRE].
  42. [42]
    R. Boughezal, A. Isgrò and F. Petriello, Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production, Phys. Rev.D 97 (2018) 076006 [arXiv:1802.00456] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • John M. Campbell
    • 1
    Email author
  • R. Keith Ellis
    • 2
  • Satyajit Seth
    • 2
  1. 1.FermilabBataviaU.S.A.
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K.

Personalised recommendations