Advertisement

Journal of High Energy Physics

, 2019:135 | Cite as

Boundary-to-bulk maps for AdS causal wedges and RG flow

  • Nicolás Del Grosso
  • Alan GarbarzEmail author
  • Gabriel Palau
  • Guillem Pérez-Nadal
Open Access
Regular Article - Theoretical Physics
  • 51 Downloads

Abstract

We consider the problem of defining spacelike-supported boundary-to-bulk propagators in AdSd+1 down to the unitary bound ∆ = (d − 2)/2. That is to say, we construct the ‘smearing functions’ K of HKLL but with different boundary conditions where both dimensions ∆+ and ∆ are taken into account. More precisely, we impose Robin boundary conditions, which interpolate between Dirichlet and Neumann boundary conditions and we give explicit expressions for the distributional kernel K with spacelike support. This flow between boundary conditions is known to be captured in the boundary by adding a double-trace deformation to the CFT. Indeed, we explicitly show that using K there is a consistent and explicit map from a Wightman function of the boundary QFT to a Wightman function of the bulk theory. In order to accomplish this we have to study first the microlocal properties of the boundary two-point function of the perturbed CFT and prove its wavefront set satisfies the microlocal spectrum condition. This permits to assert that K and the boundary two-point function can be multiplied as distributions.

Keywords

AdS-CFT Correspondence Renormalization Group Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Boundary view of horizons and locality, Phys. Rev.D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].
  2. [2]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].
  3. [3]
    V.K. Dobrev, Intertwining operator realization of the AdS/CFT correspondence, Nucl. Phys.B 553 (1999) 559 [hep-th/9812194] [INSPIRE].
  4. [4]
    N. Aizawa and V.K. Dobrev, Intertwining Operator Realization of anti de Sitter Holography, Rept. Math. Phys.75 (2015) 179 [arXiv:1406.2129] [INSPIRE].
  5. [5]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev.D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].
  6. [6]
    D. Kabat and G. Lifschytz, CFT representation of interacting bulk gauge fields in AdS, Phys. Rev.D 87 (2013) 086004 [arXiv:1212.3788] [INSPIRE].
  7. [7]
    S. Leichenauer and V. Rosenhaus, AdS black holes, the bulk-boundary dictionary and smearing functions, Phys. Rev.D 88 (2013) 026003 [arXiv:1304.6821] [INSPIRE].
  8. [8]
    R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null Geodesics, Local CFT Operators and AdS/CFT for Subregions, Phys. Rev.D 88 (2013) 064057 [arXiv:1209.4641] [INSPIRE].
  9. [9]
    I.A. Morrison, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP05 (2014) 053 [arXiv:1403.3426] [INSPIRE].
  10. [10]
    L. Hormander, The Analysis of Linear Partial Differential Operators I, second edition, Springer-Verlag, Berlin Germany (1990).Google Scholar
  11. [11]
    C. Brouder, N.V. Dang and F. H́elein, A smooth introduction to the wavefront set, J. Phys.A 47 (2014) 443001 [arXiv:1404.1778] [INSPIRE].
  12. [12]
    R. Brunetti, K. Fredenhagen and M. Kohler, The Microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Commun. Math. Phys.180 (1996) 633 [gr-qc/9510056] [INSPIRE].
  13. [13]
    S.J. Avis, C.J. Isham and D. Storey, Quantum Field Theory in anti-de Sitter Space-Time, Phys. Rev.D 18 (1978) 3565 [INSPIRE].
  14. [14]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav.21 (2004) 2981 [hep-th/0402184] [INSPIRE].
  15. [15]
    C. Dappiaggi, H. Ferreira and A. Marta, Ground states of a Klein-Gordon field with Robin boundary conditions in global anti-de Sitter spacetime, Phys. Rev.D 98 (2018) 025005 [arXiv:1805.03135] [INSPIRE].
  16. [16]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett.B 115 (1982) 197 [INSPIRE].
  17. [17]
    I.M. Gel’fand and G.E. Shilov, Generalized Functions, Vol. 1, Academic Press, New York U.S.A. (1964).Google Scholar
  18. [18]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  19. [19]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
  20. [20]
    S.S. Gubser and I.R. Klebanov, A Universal result on central charges in the presence of double trace deformations, Nucl. Phys.B 656 (2003) 23 [hep-th/0212138] [INSPIRE].
  21. [21]
    S.S. Gubser and I. Mitra, Double trace operators and one loop vacuum energy in AdS/CFT, Phys. Rev.D 67 (2003) 064018 [hep-th/0210093] [INSPIRE].
  22. [22]
    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP01 (2008) 019 [hep-th/0602106] [INSPIRE].
  23. [23]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].
  24. [24]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  25. [25]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].
  26. [26]
    C. Dappiaggi and H.R.C. Ferreira, Hadamard states for a scalar field in anti–de Sitter spacetime with arbitrary boundary conditions, Phys. Rev.D 94 (2016) 125016 [arXiv:1610.01049] [INSPIRE].
  27. [27]
    A. Zettl, Sturm-Liouville Theory, AMS Press, New York U.S.A. (2005).Google Scholar
  28. [28]
    V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev.D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].
  29. [29]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Holographic description of the black hole interior, Phys. Rev.D 75 (2007) 106001 [Erratum ibid.D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].
  30. [30]
    F.W.J. Olver et al. eds., NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov/, Release 1.0.23 of 2019-06-15.
  31. [31]
    M. Porrati and C.C.Y. Yu, Notes on Relevant, Irrelevant, Marginal and Extremal Double Trace Perturbations, JHEP11 (2016) 040 [arXiv:1609.00353] [INSPIRE].
  32. [32]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. 2: Fourier Analysis, Self-Adjointness, Academic Press, New York U.S.A. (1975).Google Scholar
  33. [33]
    W. Rudin, Functional Analysis, McGraw-Hill, New York U.S.A. (1991).Google Scholar
  34. [34]
    M. Matias, The wavefront set and oscillatory integrals, MSc Thesis, University of Helsinki, Helsinki Finland (2015), https://helda.helsinki.fi/handle/10138/154461.
  35. [35]
    A. Strohmaier, Microlocal analysis, Letc. Notes Phys.786 (2009) 85 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics Department, University of Buenos AiresBuenos AiresArgentina
  2. 2.IFIBA-ConicetBuenos AiresArgentina

Personalised recommendations