Journal of High Energy Physics

, 2019:133 | Cite as

Absorption of closed strings by giant gravitons

  • Gaoli Chen
  • Robert de Mello KochEmail author
  • Minkyoo Kim
  • Hendrik J.R. Van Zyl
Open Access
Regular Article - Theoretical Physics


A new approach to the computation of correlation functions involving two determinant operators as well as one non-protected single trace operator has recently been developed by Jiang, Komatsu and Vescovi. This correlation function provides the holographic description of the absorption of a closed string by a giant graviton. The analysis has a natural interpretation in the framework of group representation theory, which admits a generalization to general Schur polynomials and restricted Schur polynomials. This generalizes the holographic description to any giant or dual giant gravitons which carry more than one angular momentum on the sphere. For a restricted Schur polynomial labeled by a column with N boxes (dual to a maximal giant graviton) we find evidence in favor of integrability. Since this restricted Schur polynomial is a \( \frac{1}{2} \)-BPS operator, this integrability is a corollary of the results of Jiang, Komatsu and Vescovi.


1/N Expansion AdS-CFT Correspondence Brane Dynamics in Gauge Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP04 (2002) 034 [hep-th/0107119] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Berenstein, Shape and holography: Studies of dual operators to giant gravitons, Nucl. Phys.B 675 (2003) 179 [hep-th/0306090] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys.5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ‘Holey sheets’: Pfaffians and subdeterminants as D-brane operators in large N gauge theories, JHEP12 (2002) 069 [hep-th/0211152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    T.W. Brown, R. de Mello Koch, S. Ramgoolam and N. Toumbas, Correlators, Probabilities and Topologies in N = 4 SYM, JHEP03 (2007) 072 [hep-th/0611290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Hirano and Y. Sato, Giant graviton interactions and M2-branes ending on multiple M5-branes, JHEP05 (2018) 065 [arXiv:1803.04172] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP08 (2000) 040 [hep-th/0008015] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP08 (2000) 051 [hep-th/0008016] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP03 (2005) 006 [hep-th/0411205] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons — with Strings Attached (I), JHEP06 (2007) 074 [hep-th/0701066] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  15. [15]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons — with Strings Attached (II), JHEP09 (2007) 049 [hep-th/0701067] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant Gravitons — with Strings Attached (III), JHEP02 (2008) 029 [arXiv:0710.5372] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 superYang-Mills, JHEP08 (2002) 037 [hep-th/0204196] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    D. Berenstein, D.H. Correa and S.E. Vazquez, Quantizing open spin chains with variable length: An Example from giant gravitons, Phys. Rev. Lett.95 (2005) 191601 [hep-th/0502172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Berenstein, D.H. Correa and S.E. Vazquez, A Study of open strings ending on giant gravitons, spin chains and integrability, JHEP09 (2006) 065 [hep-th/0604123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys.B 641 (2002) 131 [hep-th/0205221] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP11 (2007) 078 [arXiv:0709.2158] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP02 (2008) 030 [arXiv:0711.0176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP04 (2009) 089 [arXiv:0806.1911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    R. de Mello Koch, E. Gandote and J.-H. Huang, Non-Perturbative String Theory from AdS/CFT, JHEP02 (2019) 169 [arXiv:1901.02591] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Y. Jiang, S. Komatsu and E. Vescovi, Structure Constants in N = 4 SYM at Finite Coupling as Worldsheet g-Function, arXiv:1906.07733 [INSPIRE].
  29. [29]
    Y. Jiang, S. Komatsu and E. Vescovi, Exact Three-Point Functions of Determinant Operators in Planar N = 4 Supersymmetric Yang-Mills Theory, arXiv:1907.11242 [INSPIRE].
  30. [30]
    D. Bak, B. Chen and J.-B. Wu, Holographic Correlation Functions for Open Strings and Branes, JHEP06 (2011) 014 [arXiv:1103.2024] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP06 (2011) 085 [arXiv:1103.4079] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus Non-Extremal Correlators with Giant Gravitons, JHEP08 (2012) 143 [arXiv:1204.4172] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    H. Lin, Giant gravitons and correlators, JHEP12 (2012) 011 [arXiv:1209.6624] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT and Integrability, JHEP08 (2015) 098 [arXiv:1506.06958] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys.B 342 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Brézin and S. Hikami, Vertices from replica in a random matrix theory, J. Phys.A 40 (2007) 3545 [arXiv:0704.2044] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  37. [37]
    E. Brézin and S. Hikami, Intersection theory from duality and replica, Commun. Math. Phys.283 (2008) 507 [arXiv:0708.2210] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    R. Gopakumar, Open-closed-open string duality, talk given at the Second Joburg Workshop on String Theory: Correlation Functions and the AdS/CFT Correspondence, University of Witwatersrand, Johannesburg, South Africa, 26–30 April 2010 and online pdf version at 2/pdfs/rajesh.pdf.
  39. [39]
    R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N ) super Yang-Mills theory, JHEP11 (2004) 081 [hep-th/0410236] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  40. [40]
    B. Eynard, Formal matrix integrals and combinatorics of maps, math-ph/0611087 [INSPIRE].
  41. [41]
    D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP06 (2005) 059 [hep-th/0501078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP11 (2007) 063 [arXiv:0708.2272] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    R. de Mello Koch, N.H. Tahiridimbisoa and C. Mathwin, Anomalous Dimensions of Heavy Operators from Magnon Energies, JHEP03 (2016) 156 [arXiv:1506.05224] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    W. Lederman, Introduction to Group Characters, Cambridge University Press, Cambridge U.K. (1977).Google Scholar
  45. [45]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP10 (2011) 009 [arXiv:1108.2761] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    A. Jevicki and B. Sakita, The Quantum Collective Field Method and Its Application to the Planar Limit, Nucl. Phys.B 165 (1980) 511 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Jevicki and B. Sakita, Collective Field Approach to the Large N Limit: Euclidean Field Theories, Nucl. Phys.B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S.R. Das and A. Jevicki, String Field Theory and Physical Interpretation of D = 1 Strings, Mod. Phys. Lett.A 5 (1990) 1639 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    S.R. Das and A. Jevicki, Large N collective fields and holography, Phys. Rev.D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4/CFT 3Construction from Collective Fields, Phys. Rev.D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].
  51. [51]
    M.M. Sheikh-Jabbari, Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture, JHEP09 (2004) 017 [hep-th/0406214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    T. Harmark and M. Orselli, Spin Matrix Theory: A quantum mechanical model of the AdS/CFT correspondence, JHEP11 (2014) 134 [arXiv:1409.4417] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    T. Harmark, Interacting Giant Gravitons from Spin Matrix Theory, Phys. Rev.D 94 (2016) 066001 [arXiv:1606.06296] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Gaoli Chen
    • 2
  • Robert de Mello Koch
    • 1
    • 2
    Email author
  • Minkyoo Kim
    • 2
  • Hendrik J.R. Van Zyl
    • 2
  1. 1.School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina
  2. 2.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations