Absorption of closed strings by giant gravitons
- 27 Downloads
Abstract
A new approach to the computation of correlation functions involving two determinant operators as well as one non-protected single trace operator has recently been developed by Jiang, Komatsu and Vescovi. This correlation function provides the holographic description of the absorption of a closed string by a giant graviton. The analysis has a natural interpretation in the framework of group representation theory, which admits a generalization to general Schur polynomials and restricted Schur polynomials. This generalizes the holographic description to any giant or dual giant gravitons which carry more than one angular momentum on the sphere. For a restricted Schur polynomial labeled by a column with N boxes (dual to a maximal giant graviton) we find evidence in favor of integrability. Since this restricted Schur polynomial is a \( \frac{1}{2} \)-BPS operator, this integrability is a corollary of the results of Jiang, Komatsu and Vescovi.
Keywords
1/N Expansion AdS-CFT Correspondence Brane Dynamics in Gauge TheoriesNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
- [2]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [3]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [4]V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP04 (2002) 034 [hep-th/0107119] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [5]D. Berenstein, Shape and holography: Studies of dual operators to giant gravitons, Nucl. Phys.B 675 (2003) 179 [hep-th/0306090] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [6]S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys.5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
- [7]O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ‘Holey sheets’: Pfaffians and subdeterminants as D-brane operators in large N gauge theories, JHEP12 (2002) 069 [hep-th/0211152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [8]T.W. Brown, R. de Mello Koch, S. Ramgoolam and N. Toumbas, Correlators, Probabilities and Topologies in N = 4 SYM, JHEP03 (2007) 072 [hep-th/0611290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [9]S. Hirano and Y. Sato, Giant graviton interactions and M2-branes ending on multiple M5-branes, JHEP05 (2018) 065 [arXiv:1803.04172] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [10]J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [11]M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP08 (2000) 040 [hep-th/0008015] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [12]A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP08 (2000) 051 [hep-th/0008016] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [13]V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP03 (2005) 006 [hep-th/0411205] [INSPIRE].ADSMathSciNetGoogle Scholar
- [14]R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons — with Strings Attached (I), JHEP06 (2007) 074 [hep-th/0701066] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [15]R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons — with Strings Attached (II), JHEP09 (2007) 049 [hep-th/0701067] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [16]D. Bekker, R. de Mello Koch and M. Stephanou, Giant Gravitons — with Strings Attached (III), JHEP02 (2008) 029 [arXiv:0710.5372] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [17]V. Balasubramanian, M.-x. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 superYang-Mills, JHEP08 (2002) 037 [hep-th/0204196] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [18]D. Berenstein, D.H. Correa and S.E. Vazquez, Quantizing open spin chains with variable length: An Example from giant gravitons, Phys. Rev. Lett.95 (2005) 191601 [hep-th/0502172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [19]D. Berenstein, D.H. Correa and S.E. Vazquez, A Study of open strings ending on giant gravitons, spin chains and integrability, JHEP09 (2006) 065 [hep-th/0604123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [20]S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys.B 641 (2002) 131 [hep-th/0205221] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [21]Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP11 (2007) 078 [arXiv:0709.2158] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [22]T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP02 (2008) 030 [arXiv:0711.0176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [23]R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [24]R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [25]T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP04 (2009) 089 [arXiv:0806.1911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [26]M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [27]R. de Mello Koch, E. Gandote and J.-H. Huang, Non-Perturbative String Theory from AdS/CFT, JHEP02 (2019) 169 [arXiv:1901.02591] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [28]Y. Jiang, S. Komatsu and E. Vescovi, Structure Constants in N = 4 SYM at Finite Coupling as Worldsheet g-Function, arXiv:1906.07733 [INSPIRE].
- [29]Y. Jiang, S. Komatsu and E. Vescovi, Exact Three-Point Functions of Determinant Operators in Planar N = 4 Supersymmetric Yang-Mills Theory, arXiv:1907.11242 [INSPIRE].
- [30]D. Bak, B. Chen and J.-B. Wu, Holographic Correlation Functions for Open Strings and Branes, JHEP06 (2011) 014 [arXiv:1103.2024] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [31]A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP06 (2011) 085 [arXiv:1103.4079] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [32]P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus Non-Extremal Correlators with Giant Gravitons, JHEP08 (2012) 143 [arXiv:1204.4172] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [33]H. Lin, Giant gravitons and correlators, JHEP12 (2012) 011 [arXiv:1209.6624] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [34]M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT and Integrability, JHEP08 (2015) 098 [arXiv:1506.06958] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
- [35]A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys.B 342 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
- [36]E. Brézin and S. Hikami, Vertices from replica in a random matrix theory, J. Phys.A 40 (2007) 3545 [arXiv:0704.2044] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [37]E. Brézin and S. Hikami, Intersection theory from duality and replica, Commun. Math. Phys.283 (2008) 507 [arXiv:0708.2210] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [38]R. Gopakumar, Open-closed-open string duality, talk given at the Second Joburg Workshop on String Theory: Correlation Functions and the AdS/CFT Correspondence, University of Witwatersrand, Johannesburg, South Africa, 26–30 April 2010 and online pdf version at http://neo.phys.wits.ac.za/workshop 2/pdfs/rajesh.pdf.
- [39]R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N ) super Yang-Mills theory, JHEP11 (2004) 081 [hep-th/0410236] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [40]B. Eynard, Formal matrix integrals and combinatorics of maps, math-ph/0611087 [INSPIRE].
- [41]D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP06 (2005) 059 [hep-th/0501078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [42]D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP11 (2007) 063 [arXiv:0708.2272] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [43]R. de Mello Koch, N.H. Tahiridimbisoa and C. Mathwin, Anomalous Dimensions of Heavy Operators from Magnon Energies, JHEP03 (2016) 156 [arXiv:1506.05224] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [44]W. Lederman, Introduction to Group Characters, Cambridge University Press, Cambridge U.K. (1977).Google Scholar
- [45]R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP10 (2011) 009 [arXiv:1108.2761] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
- [46]A. Jevicki and B. Sakita, The Quantum Collective Field Method and Its Application to the Planar Limit, Nucl. Phys.B 165 (1980) 511 [INSPIRE].ADSCrossRefGoogle Scholar
- [47]A. Jevicki and B. Sakita, Collective Field Approach to the Large N Limit: Euclidean Field Theories, Nucl. Phys.B 185 (1981) 89 [INSPIRE].ADSCrossRefGoogle Scholar
- [48]S.R. Das and A. Jevicki, String Field Theory and Physical Interpretation of D = 1 Strings, Mod. Phys. Lett.A 5 (1990) 1639 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [49]S.R. Das and A. Jevicki, Large N collective fields and holography, Phys. Rev.D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [50]R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4/CFT 3Construction from Collective Fields, Phys. Rev.D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].
- [51]M.M. Sheikh-Jabbari, Tiny graviton matrix theory: DLCQ of IIB plane-wave string theory, a conjecture, JHEP09 (2004) 017 [hep-th/0406214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [52]T. Harmark and M. Orselli, Spin Matrix Theory: A quantum mechanical model of the AdS/CFT correspondence, JHEP11 (2014) 134 [arXiv:1409.4417] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [53]T. Harmark, Interacting Giant Gravitons from Spin Matrix Theory, Phys. Rev.D 94 (2016) 066001 [arXiv:1606.06296] [INSPIRE].ADSMathSciNetGoogle Scholar