Journal of High Energy Physics

, 2019:120 | Cite as

QCD axion on hilltop by a phase shift of π.

  • Fuminobu Takahashi
  • Wen YinEmail author
Open Access
Regular Article - Theoretical Physics


We show that the initial misalignment angle of the QCD axion (or axion-like particles) can be set very close to π, if the QCD axion has a mixing with another heavy axion which induces the phase shift ≈ π after inflation. In the simplest case, the heavy axion plays the role of the inflaton, and we call such inflation as “πnflation”. The basic idea was first proposed by Daido and the present authors in ref. [1] in 2017 and more recently discussed in ref. [2]. We show that the QCD axion with a decay constant fa ≳ 3 × 109 GeV can explain dark matter by the πnflation mechanism. A large fraction of the parameter region has an overlap with the projected sensitivity of ORGAN, MADMAX, TOORAD and IAXO. We also study implications for the effective neutrino species and isocurvature perturbations. The πnflation can provide an initial condition for the hilltop inflation in the axion landscape, and in a certain set-up, a chain of the hilltop inflation may take place.


Cosmology of Theories beyond the SM Beyond Standard Model Discrete Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP05 (2017) 044 [arXiv:1702.03284] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Takahashi and W. Yin, ALP inflation and Big Bang on Earth, JHEP07 (2019) 095 [arXiv:1903.00462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev.D 16 (1977) 1791 [INSPIRE].
  5. [5]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.B 120 (1983) 133 [INSPIRE].
  9. [9]
    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett.B 120 (1983) 137 [INSPIRE].
  10. [10]
    K.J. Bae, J.-H. Huh and J.E. Kim, Update of axion CDM energy, JCAP09 (2008) 005 [arXiv:0806.0497] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Visinelli and P. Gondolo, Dark Matter Axions Revisited, Phys. Rev.D 80 (2009) 035024 [arXiv:0903.4377] [INSPIRE].
  12. [12]
    G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Standard Model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke, JCAP08 (2017) 001 [arXiv:1610.01639] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  14. [14]
    A.D. Linde, Axions in inflationary cosmology, Phys. Lett.B 259 (1991) 38 [INSPIRE].
  15. [15]
    F. Wilczek, A Model of anthropic reasoning, addressing the dark to ordinary matter coincidence, in Universe or multiverse?, B. Carr eds., Cambridge University Press, Cambridge U.K. (2009) pg. 151 [hep-ph/0408167] [INSPIRE].
  16. [16]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev.D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].
  17. [17]
    P.W. Graham and A. Scherlis, Stochastic axion scenario, Phys. Rev.D 98 (2018) 035017 [arXiv:1805.07362] [INSPIRE].
  18. [18]
    F. Takahashi, W. Yin and A.H. Guth, QCD axion window and low-scale inflation, Phys. Rev.D 98 (2018) 015042 [arXiv:1805.08763] [INSPIRE].
  19. [19]
    P.J. Steinhardt and M.S. Turner, Saving the Invisible Axion, Phys. Lett.B 129 (1983) 51 [INSPIRE].
  20. [20]
    G. Lazarides, R.K. Schaefer, D. Seckel and Q. Shafi, Dilution of Cosmological Axions by Entropy Production, Nucl. Phys.B 346 (1990) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Kawasaki, T. Moroi and T. Yanagida, Can decaying particles raise the upper bound on the Peccei-Quinn scale?, Phys. Lett.B 383 (1996) 313 [hep-ph/9510461] [INSPIRE].
  22. [22]
    M. Kawasaki and F. Takahashi, Late-time entropy production due to the decay of domain walls, Phys. Lett.B 618 (2005) 1 [hep-ph/0410158] [INSPIRE].
  23. [23]
    E. Witten, Dyons of Charge e theta/2 pi, Phys. Lett.B 86 (1979) 283 [INSPIRE].
  24. [24]
    M. Kawasaki, F. Takahashi and M. Yamada, Suppressing the QCD Axion Abundance by Hidden Monopoles, Phys. Lett.B 753 (2016) 677 [arXiv:1511.05030] [INSPIRE].
  25. [25]
    Y. Nomura, S. Rajendran and F. Sanches, Axion Isocurvature and Magnetic Monopoles, Phys. Rev. Lett.116 (2016) 141803 [arXiv:1511.06347] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Kawasaki, F. Takahashi and M. Yamada, Adiabatic suppression of the axion abundance and isocurvature due to coupling to hidden monopoles, JHEP01 (2018) 053 [arXiv:1708.06047] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    D.H. Lyth, Axions and inflation: Sitting in the vacuum, Phys. Rev.D 45 (1992) 3394 [INSPIRE].
  28. [28]
    T. Kobayashi, R. Kurematsu and F. Takahashi, Isocurvature Constraints and Anharmonic Effects on QCD Axion Dark Matter, JCAP09 (2013) 032 [arXiv:1304.0922] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    V.B. Klaer and G.D. Moore, The dark-matter axion mass, JCAP11 (2017) 049 [arXiv:1708.07521] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Gorghetto, E. Hardy and G. Villadoro, Axions from Strings: the Attractive Solution, JHEP07 (2018) 151 [arXiv:1806.04677] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Kawasaki, T. Sekiguchi, M. Yamaguchi and J. Yokoyama, Long-term dynamics of cosmological axion strings, PTEP2018 (2018) 091E01 [arXiv:1806.05566] [INSPIRE].Google Scholar
  32. [32]
    M. Buschmann, J.W. Foster and B.R. Safdi, Early-Universe Simulations of the Cosmological Axion, arXiv:1906.00967 [INSPIRE].
  33. [33]
    M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren and J. Urrestilla, The scaling density of axion strings, arXiv:1908.03522 [INSPIRE].
  34. [34]
    G. Villadoro, Relic abundance of QCD axion DM” at the CERN-Korea TH Institute, talk at the CERN-Korea TH Institute, CERN, Geneva Switzerland (2019),
  35. [35]
    M. Czerny and F. Takahashi, Multi-Natural Inflation, Phys. Lett.B 733 (2014) 241 [arXiv:1401.5212] [INSPIRE].
  36. [36]
    M. Czerny, T. Higaki and F. Takahashi, Multi-Natural Inflation in Supergravity, JHEP05 (2014) 144 [arXiv:1403.0410] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    M. Czerny, T. Higaki and F. Takahashi, Multi-Natural Inflation in Supergravity and BICEP2, Phys. Lett.B 734 (2014) 167 [arXiv:1403.5883] [INSPIRE].
  38. [38]
    T. Higaki, T. Kobayashi, O. Seto and Y. Yamaguchi, Axion monodromy inflation with multi-natural modulations, JCAP10 (2014) 025 [arXiv:1405.0775] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Croon and V. Sanz, Saving Natural Inflation, JCAP02 (2015) 008 [arXiv:1411.7809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, JHEP02 (2018) 104 [arXiv:1710.11107] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Kitajima and F. Takahashi, Resonant conversions of QCD axions into hidden axions and suppressed isocurvature perturbations, JCAP01 (2015) 032 [arXiv:1411.2011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    R. Daido, N. Kitajima and F. Takahashi, Domain Wall Formation from Level Crossing in the Axiverse, Phys. Rev.D 92 (2015) 063512 [arXiv:1505.07670] [INSPIRE].
  43. [43]
    R. Daido, N. Kitajima and F. Takahashi, Level crossing between the QCD axion and an axionlike particle, Phys. Rev.D 93 (2016) 075027 [arXiv:1510.06675] [INSPIRE].
  44. [44]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, The QCD Axion from Aligned Axions and Diphoton Excess, Phys. Lett.B 755 (2016) 13 [arXiv:1512.05295] [INSPIRE].
  45. [45]
    S.-Y. Ho, K. Saikawa and F. Takahashi, Enhanced photon coupling of ALP dark matter adiabatically converted from the QCD axion, JCAP10 (2018) 042 [arXiv:1806.09551] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Higaki, N. Kitajima and F. Takahashi, Hidden axion dark matter decaying through mixing with QCD axion and the 3.5 keV X-ray line, JCAP12 (2014) 004 [arXiv:1408.3936] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Kobayashi and L. Ubaldi, Inflaxion Dark Matter, JHEP08 (2019) 147 [arXiv:1907.00984] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP01 (2005) 005 [hep-ph/0409138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev.D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].
  50. [50]
    T. Higaki and F. Takahashi, Natural and Multi-Natural Inflation in Axion Landscape, JHEP07 (2014) 074 [arXiv:1404.6923] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Higaki and F. Takahashi, Axion Landscape and Natural Inflation, Phys. Lett.B 744 (2015) 153 [arXiv:1409.8409] [INSPIRE].
  52. [52]
    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP01 (2016) 149 [arXiv:1511.00132] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev.D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
  54. [54]
    R.T. Co, E. Gonzalez and K. Harigaya, Axion Misalignment Driven to the Hilltop, JHEP05 (2019) 163 [arXiv:1812.11192] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G.R. Dvali, Removing the cosmological bound on the axion scale, hep-ph/9505253 [INSPIRE].
  56. [56]
    T. Banks and M. Dine, The Cosmology of string theoretic axions, Nucl. Phys.B 505 (1997) 445 [hep-th/9608197] [INSPIRE].
  57. [57]
    K. Choi, H.B. Kim and J.E. Kim, Axion cosmology with a stronger QCD in the early universe, Nucl. Phys.B 490 (1997) 349 [hep-ph/9606372] [INSPIRE].
  58. [58]
    K.S. Jeong and F. Takahashi, Suppressing Isocurvature Perturbations of QCD Axion Dark Matter, Phys. Lett.B 727 (2013) 448 [arXiv:1304.8131] [INSPIRE].
  59. [59]
    A.D. Linde and D.H. Lyth, Axionic domain wall production during inflation, Phys. Lett.B 246 (1990) 353 [INSPIRE].
  60. [60]
    D.H. Lyth and E.D. Stewart, Axions and inflation: String formation during inflation, Phys. Rev.D 46 (1992) 532 [INSPIRE].
  61. [61]
    S. Kasuya, M. Kawasaki and T. Yanagida, Cosmological axion problem in chaotic inflationary universe, Phys. Lett.B 409 (1997) 94 [hep-ph/9608405] [INSPIRE].
  62. [62]
    M. Dine and A. Anisimov, Is there a Peccei-Quinn phase transition?, JCAP07 (2005) 009 [hep-ph/0405256] [INSPIRE].Google Scholar
  63. [63]
    S. Folkerts, C. Germani and J. Redondo, Axion Dark Matter and Planck favor non-minimal couplings to gravity, Phys. Lett.B 728 (2014) 532 [arXiv:1304.7270] [INSPIRE].
  64. [64]
    T. Higaki, K.S. Jeong and F. Takahashi, Solving the Tension between High-Scale Inflation and Axion Isocurvature Perturbations, Phys. Lett.B 734 (2014) 21 [arXiv:1403.4186] [INSPIRE].
  65. [65]
    M. Dine and L. Stephenson-Haskins, Hybrid Inflation with Planck Scale Fields, JHEP09 (2015) 208 [arXiv:1408.0046] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    K. Nakayama and M. Takimoto, Higgs inflation and suppression of axion isocurvature perturbation, Phys. Lett.B 748 (2015) 108 [arXiv:1505.02119] [INSPIRE].
  67. [67]
    K. Harigaya, M. Ibe, M. Kawasaki and T.T. Yanagida, Dynamics of Peccei-Quinn Breaking Field after Inflation and Axion Isocurvature Perturbations, JCAP11 (2015) 003 [arXiv:1507.00119] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    K. Choi, E.J. Chun, S.H. Im and K.S. Jeong, Diluting the inflationary axion fluctuation by a stronger QCD in the early Universe, Phys. Lett.B 750 (2015) 26 [arXiv:1505.00306] [INSPIRE].
  69. [69]
    M. Kawasaki, M. Yamada and T.T. Yanagida, Cosmologically safe QCD axion as a present from extra dimension, Phys. Lett.B 750 (2015) 12 [arXiv:1506.05214] [INSPIRE].
  70. [70]
    F. Takahashi and M. Yamada, Strongly broken Peccei-Quinn symmetry in the early Universe, JCAP10 (2015) 010 [arXiv:1507.06387] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Agrawal, G. Marques-Tavares and W. Xue, Opening up the QCD axion window, JHEP03 (2018) 049 [arXiv:1708.05008] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    N. Kitajima, T. Sekiguchi and F. Takahashi, Cosmological abundance of the QCD axion coupled to hidden photons, Phys. Lett.B 781 (2018) 684 [arXiv:1711.06590] [INSPIRE].
  73. [73]
    T. Tenkanen and L. Visinelli, Axion dark matter from Higgs inflation with an intermediate H , JCAP08 (2019) 033 [arXiv:1906.11837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    A.D. Linde, Nonsingular Regenerating Inflationary Universe, Print-82-0554, Cambridge U.K. (1982).Google Scholar
  75. [75]
    P.J. Steinhardt, Natural Inflation, UPR-0198T (2019).Google Scholar
  76. [76]
    A. Vilenkin, The Birth of Inflationary Universes, Phys. Rev.D 27 (1983) 2848 [INSPIRE].
  77. [77]
    S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature539 (2016) 69 [arXiv:1606.07494] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].
  79. [79]
    Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, arXiv:1905.05697 [INSPIRE].
  80. [80]
    Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
  81. [81]
    MADMAX Working Group collaboration, Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Phys. Rev. Lett.118 (2017) 091801 [arXiv:1611.05865] [INSPIRE].
  82. [82]
    MADMAX collaboration, A new experimental approach to probe QCD axion dark matter in the mass range above 40 μeV, Eur. Phys. J.C 79 (2019) 186 [arXiv:1901.07401] [INSPIRE].
  83. [83]
    D.J.E. Marsh, K.-C. Fong, E.W. Lentz, L. Smejkal and M.N. Ali, A Proposal to Detect Dark Matter Using Axionic Topological Antiferromagnets, Phys. Rev. Lett.123 (2019) 121601 [arXiv:1807.08810] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].
  85. [85]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].
  86. [86]
    R. Daido, F. Takahashi and N. Yokozaki, Enhanced axion-photon coupling in GUT with hidden photon, Phys. Lett.B 780 (2018) 538 [arXiv:1801.10344] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    T. Higaki, K.S. Jeong, N. Kitajima and F. Takahashi, Quality of the Peccei-Quinn symmetry in the Aligned QCD Axion and Cosmological Implications, JHEP06 (2016) 150 [arXiv:1603.02090] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Farina, D. Pappadopulo, F. Rompineve and A. Tesi, The photo-philic QCD axion, JHEP01 (2017) 095 [arXiv:1611.09855] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    B.T. McAllister, G. Flower, E.N. Ivanov, M. Goryachev, J. Bourhill and M.E. Tobar, The ORGAN Experiment: An axion haloscope above 15 GHz, Phys. Dark Univ.18 (2017) 67 [arXiv:1706.00209] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    I.G. Irastorza et al., Towards a new generation axion helioscope, JCAP06 (2011) 013 [arXiv:1103.5334] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 JINST9 T05002 [arXiv:1401.3233] [INSPIRE].
  92. [92]
    IAXO collaboration, Physics potential of the International Axion Observatory (IAXO), JCAP06 (2019) 047 [arXiv:1904.09155] [INSPIRE].
  93. [93]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett.65 (1990) 3233 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    F.C. Adams, J.R. Bond, K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation: Particle physics models, power law spectra for large scale structure and constraints from COBE, Phys. Rev.D 47 (1993) 426 [hep-ph/9207245] [INSPIRE].
  95. [95]
    T. Higaki and F. Takahashi, Elliptic inflation: interpolating from natural inflation to R 2-inflation, JHEP03 (2015) 129 [arXiv:1501.02354] [INSPIRE].zbMATHCrossRefMathSciNetGoogle Scholar
  96. [96]
    T. Higaki and Y. Tatsuta, Inflation from periodic extra dimensions, JCAP07 (2017) 011 [arXiv:1611.00808] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    F. Takahashi, New inflation in supergravity after Planck and LHC, Phys. Lett.B 727 (2013) 21 [arXiv:1308.4212] [INSPIRE].
  98. [98]
    SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
  99. [99]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys.79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP02 (2016) 018 [arXiv:1512.03069] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    B. Döbrich, J. Jaeckel and T. Spadaro, Light in the beam dump. Axion-Like Particle production from decay photons in proton beam-dumps, JHEP05 (2019) 213 [arXiv:1904.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    A. Salvio, A. Strumia and W. Xue, Thermal axion production, JCAP01 (2014) 011 [arXiv:1310.6982] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A. Kogut et al., The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations, JCAP07 (2011) 025 [arXiv:1105.2044] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].
  105. [105]
    D. Baumann, D. Green and M. Zaldarriaga, Phases of New Physics in the BAO Spectrum, JCAP11 (2017) 007 [arXiv:1703.00894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    K. Osato, T. Sekiguchi, M. Shirasaki, A. Kamada and N. Yoshida, Cosmological Constraint on the Light Gravitino Mass from CMB Lensing and Cosmic Shear, JCAP06 (2016) 004 [arXiv:1601.07386] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R. Mayle, J.R. Wilson, J.R. Ellis, K.A. Olive, D.N. Schramm and G. Steigman, Constraints on Axions from SN 1987a, Phys. Lett.B 203 (1988) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    G. Raffelt and D. Seckel, Bounds on Exotic Particle Interactions from SN 1987a, Phys. Rev. Lett.60 (1988) 1973.MathSciNetCrossRefGoogle Scholar
  109. [109]
    M.S. Turner, Axions from SN 1987a, Phys. Rev. Lett.60 (1988) 1797 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    E. Witten, Large N Chiral Dynamics, Annals Phys.128 (1980) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A.V. Smilga, QCD at theta similar to pi, Phys. Rev.D 59 (1999) 114021 [hep-ph/9805214] [INSPIRE].
  113. [113]
    D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal and Temperature, JHEP05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. [114]
    R. Kitano, T. Suyama and N. Yamada, θ = π in SU(N)/ℤNgauge theories, JHEP09 (2017) 137 [arXiv:1709.04225] [INSPIRE].
  115. [115]
    P. Di Vecchia, G. Rossi, G. Veneziano and S. Yankielowicz, Spontaneous C P breaking in QCD and the axion potential: an effective Lagrangian approach, JHEP12 (2017) 104 [arXiv:1709.00731] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. [116]
    A. Arvanitaki, Astro/cosmo probes of axions/ALPs, talk at the CERN-Korea TH Institute, CERN, Geneva Switzerland (2019), Scholar
  117. [117]
    K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys.B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].
  118. [118]
    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett.B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].
  119. [119]
    T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett.B 522 (2001) 215 [Erratum ibid.B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].
  120. [120]
    M. Kawasaki, K. Nakayama and F. Takahashi, Hilltop Non-Gaussianity, JCAP01 (2009) 026 [arXiv:0810.1585] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    M. Kawasaki, T. Kobayashi and F. Takahashi, Non-Gaussianity from Curvatons Revisited, Phys. Rev.D 84 (2011) 123506 [arXiv:1107.6011] [INSPIRE].
  122. [122]
    M. Kawasaki, T. Kobayashi and F. Takahashi, Non-Gaussianity from Axionic Curvaton, JCAP03 (2013) 016 [arXiv:1210.6595] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev.D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].
  124. [124]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    S.A. Kim, A.R. Liddle and D. Seery, Non-Gaussianity in axion Nflation models, Phys. Rev. Lett.105 (2010) 181302 [arXiv:1005.4410] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev.D 23 (1981) 347 [INSPIRE].
  127. [127]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev.D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett.73 (1994) 1886 [hep-ph/9406319] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    A.D. Linde and A. Riotto, Hybrid inflation in supergravity, Phys. Rev.D 56 (1997) R1841 [hep-ph/9703209] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    T. Kugo and T. Yanagida, Unification of Families Based on a Coset Space E7/SU(5) × SU(3) × U(1), Phys. Lett.B 134 (1984) 313 [INSPIRE].
  131. [131]
    T. Yanagida and Y. Yasui, Supersymmetric nonlinear σ-models based on exceptional groups, Nucl. Phys.B 269 (1986) 575 [INSPIRE].
  132. [132]
    Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP07 (2010) 017 [arXiv:1002.2228] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. [133]
    T. Kugo and T.T. Yanagida, Coupling Supersymmetric Nonlinear σ-models to Supergravity, Prog. Theor. Phys.124 (2010) 555 [arXiv:1003.5985] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  134. [134]
    T.T. Yanagida, W. Yin and N. Yokozaki, Bino-wino coannihilation as a prediction in the E 7unification of families, arXiv:1907.07168 [INSPIRE].
  135. [135]
    M. Yamaguchi and W. Yin, A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model, PTEP2018 (2018) 023B06 [arXiv:1606.04953] [INSPIRE].Google Scholar
  136. [136]
    W. Yin and N. Yokozaki, Splitting mass spectra and muon g − 2 in Higgs-anomaly mediation, Phys. Lett.B 762 (2016) 72 [arXiv:1607.05705] [INSPIRE].
  137. [137]
    T.T. Yanagida, W. Yin and N. Yokozaki, Flavor-Safe Light Squarks in Higgs-Anomaly Mediation, JHEP04 (2018) 012 [arXiv:1801.05785] [INSPIRE].zbMATHCrossRefGoogle Scholar
  138. [138]
    M. Endo and W. Yin, Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings, JHEP08 (2019) 122 [arXiv:1906.08768] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev.D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].
  140. [140]
    A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario, Phys. Rev.D 93 (2016) 085031 [Addendum ibid.D 94 (2016) 049908] [arXiv:1512.06436] [INSPIRE].
  141. [141]
    S.-Y. Ho, F. Takahashi and W. Yin, Relaxing the Cosmological Moduli Problem by Low-scale Inflation, JHEP04 (2019) 149 [arXiv:1901.01240] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsTohoku UniversitySendaiJapan
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan
  3. 3.Department of PhysicsKAISTDaejeonSouth Korea

Personalised recommendations