Journal of High Energy Physics

, 2019:119 | Cite as

String field theory as world-sheet UV regulator

  • Ashoke SenEmail author
Open Access
Regular Article - Theoretical Physics


Even at tree level, the first quantized string theory suffers from apparent short distance singularities associated with collision of vertex operators that prevent us from straightforward numerical computation of various quantities. Examples include string theory S-matrix for generic external momenta and computation of the spectrum of string theory under a marginal deformation of the world-sheet theory. The former requires us to define the S-matrix via analytic continuation or as limits of contour integrals in complexified moduli space, while the latter requires us to use an ultraviolet cut-off at intermediate steps. In contrast, string field theory does not suffer from such divergences. In this paper we show how string field theory can be used to generate an explicit algorithm for computing tree level amplitudes in any string theory that does not suffer from any short distance divergence from integration over the world-sheet variables. We also use string field theory to compute second order mass shift of string states under a marginal deformation without having to use any cut-off at intermediate steps. We carry out the analysis in a broad class of string field theories, thereby making it manifest that the final results are independent of the extra data that go into the formulation of string field theory. We also comment on the generalization of this analysis to higher genus amplitudes.


String Field Theory Bosonic Strings Superstrings and Heterotic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys.10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    C. de Lacroix, H. Erbin, S.P. Kashyap, A. Sen and M. Verma, Closed Superstring Field Theory and its Applications, Int. J. Mod. Phys.A 32 (2017) 1730021 [arXiv:1703.06410] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys.B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys.B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M. Saadi and B. Zwiebach, Closed String Field Theory from Polyhedra, Annals Phys.192 (1989) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Kugo, H. Kunitomo and K. Suehiro, Nonpolynomial Closed String Field Theory, Phys. Lett.B 226 (1989) 48 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Kugo and K. Suehiro, Nonpolynomial Closed String Field Theory: Action and Its Gauge Invariance, Nucl. Phys.B 337 (1990) 434 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Sonoda and B. Zwiebach, Closed String Field Theory Loops With Symmetric Factorizable Quadratic Differentials, Nucl. Phys.B 331 (1990) 592 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys.B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    B. Zwiebach, Oriented open-closed string theory revisited, Annals Phys.267 (1998) 193 [hep-th/9705241] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    R. Saroja and A. Sen, Picture changing operators in closed fermionic string field theory, Phys. Lett.B 286 (1992) 256 [hep-th/9202087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Erler, S. Konopka and I. Sachs, Resolving Witten‘s superstring field theory, JHEP04 (2014) 150 [arXiv:1312.2948] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    T. Erler, S. Konopka and I. Sachs, NS-NS Sector of Closed Superstring Field Theory, JHEP08 (2014) 158 [arXiv:1403.0940] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    A. Sen, BV Master Action for Heterotic and Type II String Field Theories, JHEP02 (2016) 087 [arXiv:1508.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Erler, Y. Okawa and T. Takezaki, Complete Action for Open Superstring Field Theory with Cyclic A∞ Structure, JHEP08 (2016) 012 [arXiv:1602.02582] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    S. Konopka and I. Sachs, Open Superstring Field Theory on the Restricted Hilbert Space, JHEP04 (2016) 164 [arXiv:1602.02583] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys.B 450 (1995) 90 [Erratum ibid.B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  18. [18]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP11 (2001) 047 [hep-th/0109100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Y. Okawa and B. Zwiebach, Heterotic string field theory, JHEP07 (2004) 042 [hep-th/0406212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Kunitomo and Y. Okawa, Complete action for open superstring field theory, PTEP2016 (2016) 023B01 [arXiv:1508.00366] [INSPIRE].
  22. [22]
    A.J. Hanson and J.-P. Sha, A contour integral representation for the dual five-point function and a symmetry of the genus-4 surface in R 6 , J. Phys.A 39 (2006) 2509 [math-ph/0510064] [INSPIRE].
  23. [23]
    E. Witten, The Feynman iE in String Theory, JHEP04 (2015) 055 [arXiv:1307.5124] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Mizera, Combinatorics and Topology of Kawai-Lewellen-Tye Relations, JHEP08 (2017) 097 [arXiv:1706.08527] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    W. Siegel, Covariantly Second Quantized String. 2, Phys. Lett.149B (1984) 157 [INSPIRE].
  26. [26]
    H. Hata and B. Zwiebach, Developing the covariant Batalin-Vilkovisky approach to string theory, Annals Phys.229 (1994) 177 [hep-th/9301097] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    A. Sen and B. Zwiebach, A proof of local background independence of classical closed string field theory, Nucl. Phys.B 414 (1994) 649 [hep-th/9307088] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    A. Sen and B. Zwiebach, Quantum background independence of closed string field theory, Nucl. Phys.B 423 (1994) 580 [hep-th/9311009] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    A. Sen, Background Independence of Closed Superstring Field Theory, JHEP02 (2018) 155 [arXiv:1711.08468] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett.B 654 (2007) 194 [hep-th/0701248] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP01 (2008) 028 [hep-th/0701249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP09 (2007) 101 [arXiv:0704.2222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP03 (2011) 122 [arXiv:1009.6185] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    T. Erler and C. Maccaferri, String Field Theory Solution for Any Open String Background, JHEP10 (2014) 029 [arXiv:1406.3021] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A. Sen, Gauge Invariant 1PI Effective Action for Superstring Field Theory, JHEP06 (2015) 022 [arXiv:1411.7478] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    A. Sen, Supersymmetry Restoration in Superstring Perturbation Theory, JHEP12 (2015) 075 [arXiv:1508.02481] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    S. Mukherji and A. Sen, Some all order classical solutions in nonpolynomial closed string field theory, Nucl. Phys. B 363 (1991) 639 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys.87 (1992) 801 [hep-th/9201040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Cho, S. Collier and X. Yin, Strings in Ramond-Ramond Backgrounds from the Neveu-Schwarz-Ramond Formalism, arXiv:1811.00032 [INSPIRE].
  40. [40]
    S.F. Moosavian and R. Pius, Hyperbolic Geometry of Superstring Perturbation Theory, arXiv:1703.10563 [INSPIRE].
  41. [41]
    S.F. Moosavian and R. Pius, Hyperbolic geometry and closed bosonic string field theory. Part I. The string vertices via hyperbolic Riemann surfaces, JHEP08 (2019) 157 [arXiv:1706.07366] [INSPIRE].
  42. [42]
    S.F. Moosavian and R. Pius, Hyperbolic geometry and closed bosonic string field theory. Part II. The rules for evaluating the quantum BV master action, JHEP08 (2019) 177 [arXiv:1708.04977] [INSPIRE].
  43. [43]
    S. Ghosh and S. Raju, Breakdown of String Perturbation Theory for Many External Particles, Phys. Rev. Lett.118 (2017) 131602 [arXiv:1611.08003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    P. Di Vecchia, R. Nakayama, J.L. Petersen and S. Sciuto, Properties of the Three Reggeon Vertex in String Theories, Nucl. Phys.B 282 (1987) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    A. Sen, Off-shell Amplitudes in Superstring Theory, Fortsch. Phys.63 (2015) 149 [arXiv:1408.0571] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    A. Sen and E. Witten, Filling the gaps with PCO’s, JHEP09 (2015) 004 [arXiv:1504.00609] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    J.J. Atick, G.W. Moore and A. Sen, Catoptric Tadpoles, Nucl. Phys.B 307 (1988) 221 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  49. [49]
    R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: Special States, JHEP07 (2014) 058 [arXiv:1311.1257] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    R. Pius, A. Rudra and A. Sen, Mass Renormalization in String Theory: General States, JHEP07 (2014) 062 [arXiv:1401.7014] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    R. Pius, A. Rudra and A. Sen, String Perturbation Theory Around Dynamically Shifted Vacuum, JHEP10 (2014) 070 [arXiv:1404.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Pius and A. Sen, Cutkosky rules for superstring field theory, JHEP10 (2016) 024 [Erratum ibid.09 (2018) 122] [arXiv:1604.01783] [INSPIRE].
  53. [53]
    A. Sen, Equivalence of Two Contour Prescriptions in Superstring Perturbation Theory, JHEP04 (2017) 025 [arXiv:1610.00443] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    A. Sen, One Loop Mass Renormalization of Unstable Particles in Superstring Theory, JHEP11 (2016) 050 [arXiv:1607.06500] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteHBNIAllahabadIndia

Personalised recommendations