Advertisement

Journal of High Energy Physics

, 2019:117 | Cite as

Spinors in supersymmetric dS/CFT

  • Thomas Hertog
  • Gabriele Tartaglino-Mazzucchelli
  • Gerben VenkenEmail author
Open Access
Regular Article - Theoretical Physics
  • 42 Downloads

Abstract

We study fermionic bulk fields in the dS/CFT dualities relating \( \mathcal{N} \)= 2 su- persymmetric Euclidean vector models with reversed spin-statistics in three dimensions to supersymmetric Vasiliev theories in four-dimensional de Sitter space. These dualities specify the Hartle-Hawking wave function in terms of the partition function of deforma- tions of the vector models. We evaluate this wave function in homogeneous minisuperspace models consisting of supersymmetry-breaking combinations of a half-integer spin field with either a scalar, a pseudoscalar or a metric squashing. The wave function appears to be well-behaved and globally peaked at or near the supersymmetric de Sitter vacuum, with a low amplitude for large deformations. Its behavior in the semiclassical limit qualitatively agrees with earlier bulk computations both for massless and massive fermionic fields.

Keywords

AdS-CFT Correspondence Extended Supersymmetry Higher Spin Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    C.M. Hull, Timelike T duality, de Sitter space, large N gauge theories and topological field theory, JHEP07 (1998) 021 [hep-th/9806146] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    V. Balasubramanian, J. de Boer and D. Minic, Mass, entropy and holography in asymptotically de Sitter spaces, Phys. Rev.D 65 (2002) 123508 [hep-th/0110108] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    A. Strominger, The dS/CFT correspondence, JHEP10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev.D 28 (1983) 2960 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  7. [7]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  8. [8]
    T. Hertog and J. Hartle, Holographic No-Boundary Measure, JHEP05 (2012) 095 [arXiv:1111.6090] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav.34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of Spacetime, JHEP02 (2018) 050 [arXiv:1603.05665] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    K. Skenderis, P.K. Townsend and A. Van Proeyen, Domain-wall/cosmology correspondence in AdS/dS supergravity, JHEP08 (2007) 036 [arXiv:0704.3918] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    E.A. Bergshoeff, J. Hartong, A. Ploegh, J. Rosseel and D. Van den Bleeken, Pseudo-supersymmetry and a tale of alternate realities, JHEP07 (2007) 067 [arXiv:0704.3559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.B. Hartle, S.W. Hawking and T. Hertog, Quantum Probabilities for Inflation from Holography, JCAP01 (2014) 015 [arXiv:1207.6653] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D. Anninos, F. Denef and D. Harlow, Wave function of Vasiliev’s universe: A few slices thereof, Phys. Rev.D 88 (2013) 084049 [arXiv:1207.5517] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, JHEP02 (2014) 007 [arXiv:1305.6321] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Bobev, T. Hertog and Y. Vreys, The NUTs and Bolts of Squashed Holography, JHEP11 (2016) 140 [arXiv:1610.01497] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    G. Conti, T. Hertog and Y. Vreys, Squashed Holography with Scalar Condensates, JHEP09 (2018) 068 [arXiv:1707.09663] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    S.W. Hawking and T. Hertog, A Smooth Exit from Eternal Inflation?, JHEP04 (2018) 147 [arXiv:1707.07702] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett.B 243 (1990) 378 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S. Giombi, Higher Spin — CFT Duality, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder U.S.A. (2015), pg. 137 [arXiv:1607.02967] [INSPIRE].
  22. [22]
    T. Hertog, G. Tartaglino-Mazzucchelli, T. Van Riet and G. Venken, Supersymmetric dS/CFT, JHEP02 (2018) 024 [arXiv:1709.06024] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    K. Pilch, P. van Nieuwenhuizen and M.F. Sohnius, de Sitter Superalgebras and Supergravity, Commun. Math. Phys.98 (1985) 105 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    J. Lukierski and A. Nowicki, All Possible de Sitter Superalgebras and the Presence of Ghosts, Phys. Lett.B 151 (1985) 382 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference, Mumbai India (2001) [hep-th/0106109] [INSPIRE].
  26. [26]
    E. Sezgin and P. Sundell, Supersymmetric Higher Spin Theories, J. Phys.A 46 (2013) 214022 [arXiv:1208.6019] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    T. Anous, D.Z. Freedman and A. Maloney, de Sitter Supersymmetry Revisited, JHEP07 (2014) 119 [arXiv:1403.5038] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. Buican and Z. Laczko, Nonunitary Lagrangians and unitary non-Lagrangian conformal field theories, Phys. Rev. Lett.120 (2018) 081601 [arXiv:1711.09949] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Buican and Z. Laczko, Rationalizing CFTs and Anyonic Imprints on Higgs Branches, JHEP03 (2019) 025 [arXiv:1901.07591] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    P.D. D’Eath and J.J. Halliwell, Fermions in Quantum Cosmology, Phys. Rev.D 35 (1987) 1100 [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    P.D. D’Eath, Supersymmetric quantum cosmology, Cambridge Monographs on Mathematical Physics , Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  33. [33]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry 1, Math. Proc. Cambridge Phil. Soc.77 (1975) 43.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    F.A. Berezin, The method of second quantization, Pure Appl. Phys.24 (1966) 1.MathSciNetCrossRefGoogle Scholar
  35. [35]
    L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, Front. Phys.50 (1980) 1 [INSPIRE].zbMATHGoogle Scholar
  36. [36]
    B. Willett, Localization on three-dimensional manifolds, J. Phys.A 50 (2017) 443006 [arXiv:1608.02958] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N = 2 (AdS) supergravity and associated supercurrents, JHEP12 (2011) 052 [arXiv:1109.0496] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys.B 644 (2002) 303 [Erratum ibid.B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  40. [40]
    R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS4 , JHEP06 (2003) 011 [hep-th/0304217] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    N. Bobev, P. Bueno and Y. Vreys, Comments on Squashed-sphere Partition Functions, JHEP07 (2017) 093 [arXiv:1705.00292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    J.S. Dowker, Effective actions on the squashed three sphere, Class. Quant. Grav.16 (1999) 1937 [hep-th/9812202] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  44. [44]
    G.W. Gibbons, Spectral Asymmetry and Quantum Field Theory in Curved Space-time, Annals Phys.125 (1980) 98 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    N. Hitchin, Harmonic spinors, Adv. Math.14 (1974) 1.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP10 (2011) 038 [arXiv:1105.4598] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev.D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Anninos, F. Denef, R. Monten and Z. Sun, Higher Spin de Sitter Hilbert Space, arXiv:1711.10037 [INSPIRE].
  51. [51]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics , Cambridge University Press, Cambidge U.K. (2007).Google Scholar
  52. [52]
    S. Corley, The Massless gravitino and the AdS/CFT correspondence, Phys. Rev.D 59 (1999) 086003 [hep-th/9808184] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    A. Volovich, Rarita-Schwinger field in the AdS/CFT correspondence, JHEP09 (1998) 022 [hep-th/9809009] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    P.D. D’Eath and D.I. Hughes, Supersymmetric minisuperspace, Phys. Lett.B 214 (1988) 498 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P.D. D’Eath and D.I. Hughes, Minisuperspace with local supersymmetry, Nucl. Phys.B 378 (1992) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    P.V. Moniz, Supersymmetric quantum cosmology: Shaken not stirred, Int. J. Mod. Phys.A 11 (1996) 4321 [gr-qc/9604025] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    A.A. Nizami, T. Sharma and V. Umesh, Superspace formulation and correlation functions of 3d superconformal field theories, JHEP07 (2014) 022 [arXiv:1308.4778] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    E.I. Buchbinder, J. Hutomo and S.M. Kuzenko, Higher spin supercurrents in anti-de Sitter space, JHEP09 (2018) 027 [arXiv:1805.08055] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    J. Hutomo, S.M. Kuzenko and D. Ogburn, \( \mathcal{N} \) = 2 supersymmetric higher spin gauge theories and current multiplets in three dimensions, Phys. Rev.D 98 (2018) 125004 [arXiv:1807.09098] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    J. Hutomo and S.M. Kuzenko, Higher spin supermultiplets in three dimensions: (2, 0) AdS supersymmetry, Phys. Lett.B 787 (2018) 175 [arXiv:1809.00802] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    D. Anninos, V. De Luca, G. Franciolini, A. Kehagias and A. Riotto, Cosmological Shapes of Higher-Spin Gravity, JCAP04 (2019) 045 [arXiv:1902.01251] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    Y. Neiman, Holographic quantization of linearized higher-spin gravity in the de Sitter causal patch, JHEP11 (2018) 033 [arXiv:1809.07270] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, FRW and domain walls in higher spin gravity, JHEP03 (2018) 153 [arXiv:1712.02401] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    B. McInnes, Exploring the similarities of the dS/CFT and AdS / CFT correspondences, Nucl. Phys.B 627 (2002) 311 [hep-th/0110062] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    J.B. Hartle, S.W. Hawking and T. Hertog, The Classical Universes of the No-Boundary Quantum State, Phys. Rev.D 77 (2008) 123537 [arXiv:0803.1663] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    E. Kiritsis and A. Tsouros, de Sitter versus Anti de Sitter flows and the (super)gravity landscape, arXiv:1901.04546 [INSPIRE].
  67. [67]
    T. Van Riet, private communication, postings on Facebook and Twitter.Google Scholar
  68. [68]
    J.B. Hartle, S.W. Hawking and T. Hertog, No-Boundary Measure of the Universe, Phys. Rev. Lett.100 (2008) 201301 [arXiv:0711.4630] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
  70. [70]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys.D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  72. [72]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  73. [73]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett.B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, Fortsch. Phys.67 (2019) 1800103 [arXiv:1807.09698] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  75. [75]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys.A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Thomas Hertog
    • 1
  • Gabriele Tartaglino-Mazzucchelli
    • 1
    • 2
    • 3
  • Gerben Venken
    • 1
    Email author
  1. 1.Institute for Theoretical PhysicsKU LeuvenLeuvenBelgium
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  3. 3.School of Mathematics and PhysicsUniversity of Queensland St LuciaBrisbaneAustralia

Personalised recommendations