Advertisement

Journal of High Energy Physics

, 2019:115 | Cite as

Topological AdS/CFT and the Ω deformation

  • Pietro Benetti GenoliniEmail author
  • Paul Richmond
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

In this note, we define a holographic dual to four-dimensional superconformal field theories formulated on arbitrary Riemannian manifolds equipped with a Killing vector. Moreover, assuming smoothness of the bulk solution, we study the variation of the holographically renormalized supergravity action in the class of metrics on the boundary four-manifold with a prescribed isometry.

Keywords

AdS-CFT Correspondence Supersymmetric Gauge Theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, JHEP08 (2012) 061 [arXiv:1205.1062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys.117 (1988) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Karlhede and M. Roček, Topological Quantum Field Theory and N = 2 Conformal Supergravity, Phys. Lett. B 212 (1988) 51 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C. Klare and A. Zaffaroni, Extended Supersymmetry on Curved Spaces, JHEP10 (2013) 218 [arXiv:1308.1102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. Benetti Genolini, P. Richmond and J. Sparks, Topological AdS/CFT, JHEP12 (2017) 039 [arXiv:1707.08575] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Benetti Genolini, P. Richmond and J. Sparks, Gravitational free energy in topological AdS/CFT, JHEP09 (2018) 100 [arXiv:1804.08625] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Bobev, F.F. Gautason and K. Hristov, Holographic dual of the Ω-background, Phys. Rev.D 100 (2019) 021901 [arXiv:1903.05095] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Benetti Genolini, J.M. Pérez Ipiña and J. Sparks, Localization of the action in AdS/CFT, arXiv:1906.11249 [INSPIRE].
  15. [15]
    K. Costello and S. Li, Twisted supergravity and its quantization, arXiv:1606.00365 [INSPIRE].
  16. [16]
    K. Costello and D. Gaiotto, Twisted Holography, arXiv:1812.09257 [INSPIRE].
  17. [17]
    L.J. Romans, Gauged N = 4 Supergravities in Five-dimensions and Their Magnetovac Backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2) × U(1) gauged supergravity from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.P. Gauntlett and O. Varela, D = 5 SU(2) × U(1) Gauged Supergravity from D = 11 Supergravity, JHEP02 (2008) 083 [arXiv:0712.3560] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Gaiotto, N = 2 dualities, JHEP08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Hellerman, D. Orlando and S. Reffert, String theory of the Omega deformation, JHEP01 (2012) 148 [arXiv:1106.0279] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S. Hellerman, D. Orlando and S. Reffert, The Omega Deformation From String and M-theory, JHEP07 (2012) 061 [arXiv:1204.4192] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Orlando and S. Reffert, Deformed supersymmetric gauge theories from the fluxtrap background, Int. J. Mod. Phys. A 28 (2013) 1330044 [arXiv:1309.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Crossley, E. Dyer and J. Sonner, Super-Rényi entropy & Wilson loops for \( \mathcal{N} \) = 4 SYM and their gravity duals, JHEP12 (2014) 001 [arXiv:1409.0542] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP02 (2013) 141 [arXiv:1208.6221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    S.W. Hawking and C.N. Pope, Generalized Spin Structures in Quantum Gravity, Phys. Lett. B 73 (1978) 42 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Back, P.G.O. Freund and M. Forger, New Gravitational Instantons and Universal Spin Structures, Phys. Lett.B 77 (1978) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.J. Avis and C.J. Isham, Generalized spin structures on four-dimensional space-times, Commun. Math. Phys. 72 (1980) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    C. Córdova and T.T. Dumitrescu, Candidate Phases for SU(2) Adjoint QCD 4with Two Flavors from \( \mathcal{N} \) = 2 Supersymmetric Yang-Mills Theory, arXiv:1806.09592 [INSPIRE].
  30. [30]
    J. Wang, X.-G. Wen and E. Witten, A New SU(2) Anomaly, J. Math. Phys.60 (2019) 052301 [arXiv:1810.00844] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Ohl and C.F. Uhlemann, The Boundary Multiplet of N = 4 SU(2) × U(1) Gauged Supergravity on Asymptotically-AdS 5, JHEP06 (2011) 086 [arXiv:1011.3533] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev.D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Taylor, More on counterterms in the gravitational action and anomalies, hep-th/0002125 [INSPIRE].
  35. [35]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys.B 182 (1981) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2on S4, JHEP07 (2014) 001 [arXiv:1311.1508] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Bobev, H. Elvang, U. Kol, T. Olson and S.S. Pufu, Holography for \( \mathcal{N} \) = 1on S4, JHEP10 (2016) 095 [arXiv:1605.00656] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary Terms and Three-Point Functions: An AdS/CFT Puzzle Resolved, JHEP06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    U. Kol, Holography for \( \mathcal{N} \) = 1on S4and Supergravity, arXiv:1611.09396 [INSPIRE].
  42. [42]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, The holographic supersymmetric Casimir energy, Phys. Rev. D 95 (2017) 021902 [arXiv:1606.02724] [INSPIRE].ADSzbMATHGoogle Scholar
  43. [43]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP07 (2017) 038 [arXiv:1703.04299] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization, JHEP12 (2017) 107 [arXiv:1703.09607] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    I. Papadimitriou, Supersymmetry anomalies in \( \mathcal{N} \) = 1 conformal supergravity, JHEP04 (2019) 040 [arXiv:1902.06717] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Closset, L. Di Pietro and H. Kim, ’t Hooft anomalies and the holomorphy of supersymmetric partition functions, JHEP08 (2019) 035 [arXiv:1905.05722] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.
  2. 2.Department of MathematicsKing’s College LondonStrandU.K.

Personalised recommendations