Journal of High Energy Physics

, 2019:114 | Cite as

Spontaneous symmetry breaking in fermionic random matrix model

  • Irina Aref’evaEmail author
  • Igor Volovich
Open Access
Regular Article - Theoretical Physics


A fermionic random matrix model, which is a 0-dimensional version of the SYK model with replicas, is considered. The replica-off-diagonal correlation functions vanish at finite N, but we show that they do not vanish in the large N limit due to spontaneous symmetry breaking. We use the Bogoliubov quasi-averages approach to studying phase transitions. The consideration may be relevant to the study of the problem of existence of the spin glass phase in fermionic models.


Spontaneous Symmetry Breaking 1/N Expansion Random Systems 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    L.D. Landau, On the theory of phase transitions, in Collected Papers. Volume 1, Nauka, Moscow Russia (1969), pp. 234-252 [Zh. Eksp. Teor. Fiz. 7 (1937) 19] [INSPIRE].
  2. [2]
    N.N. Bogoliubov, Lectures on quantum statistics. Volume 2: Quasi-Averages, Gordon and Breach Science Publishers (1970), republished in Collection of Scientific Works in Twelve Volumes: Statistical Mechanics. Volume 6, Nauka, Moscow Russia (2007).Google Scholar
  3. [3]
    Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev.117 (1960) 648 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Weinberg, The quantum theory of fields. Volume 2: Modern applications, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  5. [5]
    M. Mezard, G. Parisi and M. Virasoro, Spin Glass Theory and beyond, World Scientific (1987).Google Scholar
  6. [6]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [Erratum JHEP09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  7. [7]
    I. Aref’eva and I. Volovich, Notes on the SYK model in real time, Theor. Math. Phys.197 (2018)1650 [Teor. Mat. Fiz.197 (2018) 296] [arXiv:1801.08118] [INSPIRE].
  8. [8]
    P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
  9. [9]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Kitaev, A simple model of quantum holography, talk given at the Entanglement in Strongly-Correlated Quantum Matter, Santa Barbara, California, U.S.A., 6 April-2 July 2015 and online at
  11. [11]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev.X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    W.F. Wreszinski and V.A. Zagrebnov, Bogoliubov quasi-averages: spontaneous symmetry breaking and algebra of fluctuations, Theor. Math. Phys.194 (2018) 157 [arXiv:1704.00190] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    G. Gur-Ari, R. Mahajan and A. Vaezi, Does the SYK model have a spin glass phase?, JHEP11 (2018)070 [arXiv:1806.10145] [INSPIRE].
  14. [14]
    A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev.B 63 (2001) 134406 [cond-mat/0009388].
  15. [15]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP04 (2016)001 [arXiv:1601.06768] [INSPIRE].
  16. [16]
    W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev.B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016)106002 [arXiv:1604.07818] [INSPIRE].
  18. [18]
    A.M. García-Garćıa and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  19. [19]
    I. Aref’eva, M. Khramtsov, M. Tikhanovskaya and I. Volovich, Replica-nondiagonal solutions in the SYK model, JHEP07 (2019) 113 [arXiv:1811.04831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V.V. Belokurov and E.T. Shavgulidze, Simple rules of functional integration in the Schwarzian theory: SYK correlators, arXiv:1811.11863 [INSPIRE].
  21. [21]
    H. Wang, D. Bagrets, A.L. Chudnovskiy and A. Kamenev, On the replica structure of Sachdev-Ye-Kitaev model, arXiv:1812.02666 [INSPIRE].
  22. [22]
    J. Kim, I.R. Klebanov, G. Tarnopolsky and W. Zhao, Symmetry Breaking in Coupled SYK or Tensor Models, Phys. Rev.X 9 (2019) 021043 [arXiv:1902.02287] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  24. [24]
    A.M. Garc ıa-Garćıa, T. Nosaka, D. Rosa and J.J.M. Verbaarschot, Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole, Phys. Rev.D 100 (2019) 026002 [arXiv:1901.06031] [INSPIRE].
  25. [25]
    V.S. Vladimirov and I. Volovich, Superanalysis. I. Differential Calculus, Theor. Math. Phys.59 (1984)317 [INSPIRE].
  26. [26]
    V.S. Vladimirov and I. Volovich, Superanalysis. II. Integral calculus, Theor. Math. Phys.60 (1984)743.Google Scholar
  27. [27]
    P. Deift, T. Kriecherbauer, K.T-R. Mclaughlin, S. Venakides and X. Zhou, Strong Asymptotics of Orthogonal Polynomials with Respect to Exponential Weights, Commun. Pure Appl. Math.52 (1999) 1491.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations