Journal of High Energy Physics

, 2019:113 | Cite as

Emergent/composite axions

  • P. Anastasopoulos
  • P. Betzios
  • M. Bianchi
  • D. ConsoliEmail author
  • E. Kiritsis
Open Access
Regular Article - Theoretical Physics


Hidden theories coupled to the SM may provide emergent axions, that are composites/bound-states of the hidden fields. This is motivated by paradigms emerging from the AdS/CFT correspondence but it is a more general phenomenon. We explore the general setup and find that UV-sourced interactions of instanton densities give rise to emergent axions in the IR. We study the general properties of such axions and argue that they are generically different from both fundamental and composite axions that have been studied so far.


AdS-CFT Correspondence Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys.B 156 (1979) 269 [INSPIRE].
  3. [3]
    G. Veneziano, U(1) Without Instantons, Nucl. Phys.B 159 (1979) 213 [INSPIRE].
  4. [4]
    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].
  6. [6]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett.B 104 (1981) 199 [INSPIRE].
  7. [7]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys.31 (1980) 260 [Yad. Fiz.31 (1980) 497] [INSPIRE].
  8. [8]
    D.B. Kaplan, Opening the Axion Window, Nucl. Phys.B 260 (1985) 215 [INSPIRE].
  9. [9]
    M. Srednicki, Axion Couplings to Matter. 1. CP Conserving Parts, Nucl. Phys.B 260 (1985) 689 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Georgi, D.B. Kaplan and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys. Lett.B 169 (1986) 73 [INSPIRE].
  11. [11]
    K. Choi, K. Kang and J.E. Kim, Effects of η 1in Low-energy Axion Physics, Phys. Lett.B 181 (1986) 145 [INSPIRE].
  12. [12]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    P. Di Vecchia, G. Rossi, G. Veneziano and S. Yankielowicz, Spontaneous C P breaking in QCD and the axion potential: an effective Lagrangian approach, JHEP12 (2017) 104 [arXiv:1709.00731] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [arXiv:0807.3125] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Phys. Rept.555 (2015) 1 [arXiv:1407.0017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    D.J.E. Marsh, Axion Cosmology, Phys. Rept.643 (2016) 1 [arXiv:1510.07633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys.79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner and K.A. van Bibber, Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci.65 (2015) 485 [arXiv:1602.00039] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys.102 (2018) 89 [arXiv:1801.08127] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
  22. [22]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (2005).zbMATHGoogle Scholar
  23. [23]
    E. Kiritsis, String theory in a nutshell, second edition, Princeton University Press, Princeton U.S.A. (2019), Scholar
  24. [24]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet, Nucl. Phys.B 278 (1986) 769 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett.75 (1995) 4724 [hep-th/9510017] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys.B 456 (1995) 130 [hep-th/9507158] [INSPIRE].
  27. [27]
    E. Kiritsis, Duality and instantons in string theory, hep-th/9906018.
  28. [28]
    M. Billó, M. Frau, I. Pesando, F. Fucito, A. Lerda and A. Liccardo, Classical gauge instantons from open strings, JHEP02 (2003) 045 [hep-th/0211250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Blumenhagen, M. Cvetic, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci.59 (2009) 269 [arXiv:0902.3251].ADSCrossRefGoogle Scholar
  30. [30]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys.B 498 (1997) 195 [hep-th/9701093] [INSPIRE].
  31. [31]
    E. Kiritsis and B. Pioline, On R 4threshold corrections in IIB string theory and (p, q) string instantons, Nucl. Phys.B 508 (1997) 509 [hep-th/9707018] [INSPIRE].
  32. [32]
    M. Bianchi, M.B. Green, S. Kovacs and G. Rossi, Instantons in supersymmetric Yang-Mills and D instantons in IIB superstring theory, JHEP08 (1998) 013 [hep-th/9807033] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    M. Bianchi, S. Kovacs and G. Rossi, Instantons and Supersymmetry, Lect. Notes Phys.737 (2008) 303 [hep-th/0703142] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    M. Bianchi and M. Samsonyan, Notes on unoriented D-brane instantons, Int. J. Mod. Phys.A 24 (2009) 5737 [arXiv:0909.2173] [INSPIRE].
  35. [35]
    M. Bianchi and E. Kiritsis, Non-perturbative and Flux superpotentials for Type I strings on the Z (3) orbifold, Nucl. Phys.B 782 (2007) 26 [hep-th/0702015] [INSPIRE].
  36. [36]
    M. Bianchi, F. Fucito and J.F. Morales, D-brane instantons on the T 6/Z (3) orientifold, JHEP07 (2007) 038 [arXiv:0704.0784] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Bianchi, F. Fucito and J.F. Morales, Dynamical supersymmetry breaking from unoriented D-brane instantons, JHEP08 (2009) 040 [arXiv:0904.2156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Addazi and M. Bianchi, Neutron Majorana mass from exotic instantons, JHEP12 (2014) 089 [arXiv:1407.2897] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Bianchi, J.F. Morales and C. Wen, Instanton corrections to the effective action of N = 4 SYM, JHEP11 (2015) 006 [arXiv:1508.00554] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    J.E. Kim, A composite invisible axion, Phys. Rev.D 31 (1985) 1733 [INSPIRE].
  41. [41]
    K. Choi and J.E. Kim, Dynamical axion, Phys. Rev.D 32 (1985) 1828 [INSPIRE].
  42. [42]
    R.C. Furlong, Quen’s gambit: decuplet quarks and composite axions, Phys. Lett.B 211 (1988) 450 [INSPIRE].
  43. [43]
    L. Randall, Composite axion models and Planck scale physics, Phys. Lett.B 284 (1992) 77 [INSPIRE].
  44. [44]
    E.A. Dudas, Composite supersymmetric axion-dilaton-dilatino system and the breaking of supersymmetry, Phys. Rev.D 49 (1994) 1109 [hep-ph/9307294] [INSPIRE].
  45. [45]
    C.T. Hill and A.K. Leibovich, Natural theories of ultralow mass PNGB’s: Axions and quintessence, Phys. Rev.D 66 (2002) 075010 [hep-ph/0205237] [INSPIRE].
  46. [46]
    M. Redi and R. Sato, Composite Accidental Axions, JHEP05 (2016) 104 [arXiv:1602.05427] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    F. Wilczek and G. Moore, Superheavy Light Quarks and the Strong P, T Problem, [arXiv:1601.02937] [INSPIRE].
  48. [48]
    K.R. Dienes, E. Dudas and T. Gherghetta, Invisible axions and large radius compactifications, Phys. Rev.D 62 (2000) 105023 [hep-ph/9912455] [INSPIRE].
  49. [49]
    E. Kiritsis, Gravity and axions from a random UV QFT, EPJ Web Conf.71 (2014) 00068 [arXiv:1408.3541] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    M. Baggioli, P. Betzios, E. Kiritsis and V. Niarchos, Emergent gravity from hidden sectors, to appear.Google Scholar
  51. [51]
    P. Anastasopoulos, M. Bianchi, D. Consoli and E. Kiritsis, Graviphotons and dark photons in string theory and QFT, to appear.Google Scholar
  52. [52]
    A. Delgado, J.R. Espinosa and M. Quirós, Unparticles Higgs Interplay, JHEP10 (2007) 094 [arXiv:0707.4309] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds, hypercharge embeddings and the Standard Model, Nucl. Phys.B 759 (2006) 83 [hep-th/0605226] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett.B 39 (1972) 393 [INSPIRE].
  55. [55]
    G.R. Dvali, G. Gabadadze and M. Porrati, 4 − D gravity on a brane in 5 − D Minkowski space, Phys. Lett.B 485 (2000) 208 [hep-th/0005016] [INSPIRE].
  56. [56]
    E. Kiritsis, N. Tetradis and T.N. Tomaras, Induced gravity on RS branes, JHEP03 (2002) 019 [hep-th/0202037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    C. Charmousis, E. Kiritsis and F. Nitti, Holographic self-tuning of the cosmological constant, JHEP09 (2017) 031 [arXiv:1704.05075] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    I. Antoniadis, E. Kiritsis and T.N. Tomaras, Phys. Lett.B 486 (2000) 186 [hep-th/0004214].
  59. [59]
    I. Antoniadis, E. Kiritsis and T.N. Tomaras, D-brane standard model, Fortsch. Phys.49 (2001) 573 [hep-th/0111269] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    I. Antoniadis and S. Dimopoulos, Splitting supersymmetry in string theory, Nucl. Phys.B 715 (2005) 120 [hep-th/0411032] [INSPIRE].
  61. [61]
    I. Antoniadis, E. Kiritsis and T. Tomaras, D-brane standard model, Fortsch. Phys.49 (2001) 573 [hep-th/0111269] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    E. Kiritsis and P. Anastasopoulos, The Anomalous magnetic moment of the muon in the D-brane realization of the standard model, JHEP05 (2002) 054 [hep-ph/0201295] [INSPIRE].
  63. [63]
    E. Kiritsis, D-branes in Standard Model building, gravity and cosmology, Fortsch. Phys.52 (2004) 200 [Phys. Rept.421 (2005) 105] [Erratum ibid.429 (2006) 121] [INSPIRE].
  64. [64]
    C. Corianò, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys.B 746 (2006) 77 [hep-ph/0510332] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    I. Antoniadis, E. Kiritsis and J. Rizos, Anomalous U(1)s in type 1 superstring vacua, Nucl. Phys.B 637 (2002) 92 [hep-th/0204153] [INSPIRE].
  66. [66]
    P. Anastasopoulos, 4 − D anomalous U(1)’s, their masses and their relation to 6 – D anomalies, JHEP08 (2003) 005 [hep-th/0306042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP11 (2006) 057 [hep-th/0605225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    C. Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett.B 502 (2001) 199 [hep-th/0010186] [INSPIRE].
  69. [69]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    Y. Hamada, E. Kiritsis, F. Nitti and L.T. Witkowski, Axion RG flows and the holographic dynamics of instanton densities, arXiv:1905.03663 [INSPIRE].
  71. [71]
    R. Karplus and M. Neuman, The scattering of light by light, Phys. Rev.83 (1951) 776 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  72. [72]
    G. Mahlon, One loop multi-photon helicity amplitudes, Phys. Rev.D 49 (1994) 2197 [hep-ph/9311213] [INSPIRE].
  73. [73]
    M.G. Schmidt and C. Schubert, On the calculation of effective actions by string methods, Phys. Lett.B 318 (1993) 438 [hep-th/9309055] [INSPIRE].
  74. [74]
    A. Ritz and R. Delbourgo, The Low-energy effective Lagrangian for photon interactions in any dimension, Int. J. Mod. Phys.A 11 (1996) 253 [hep-th/9503160] [INSPIRE].
  75. [75]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  76. [76]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP09 (2008) 063 [arXiv:0805.0757] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  77. [77]
    M. Bianchi and D. Consoli, Simplifying one-loop amplitudes in superstring theory, JHEP01 (2016) 043 [arXiv:1508.00421] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    S. Marchesani and Y. Stanev, Higgs decay in two photons, MSc Thesis, University of Crete, Heraklion Greece (2013).Google Scholar
  79. [79]
    E. Vicari and H. Panagopoulos, Theta dependence of SU(N ) gauge theories in the presence of a topological term, Phys. Rept.470 (2009) 93 [arXiv:0803.1593] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP02 (2008) 019 [arXiv:0707.1349] [INSPIRE].CrossRefGoogle Scholar
  82. [82]
    U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved Holographic QCD, Lect. Notes Phys.828 (2011) 79 [arXiv:1006.5461] [INSPIRE].
  83. [83]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved Holographic Yang-Mills at Finite Temperature: Comparison with Data, Nucl. Phys.B 820 (2009) 148 [arXiv:0903.2859] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    P. Di Vecchia, K. Fabricius, G.C. Rossi and G. Veneziano, Numerical Checks of the Lattice Definition Independence of Topological Charge Fluctuations, Phys. Lett.B 108 (1982) 323 [INSPIRE].
  85. [85]
    P. Di Vecchia, K. Fabricius, G.C. Rossi and G. Veneziano, Preliminary Evidence for U(1)-A Breaking in QCD from Lattice Calculations, Nucl. Phys.B 192 (1981) 392 [INSPIRE].
  86. [86]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys.B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP08 (2001) 041 [hep-th/0105276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, ABC’s of Instantons, Sov. Phys. Usp.25 (1982) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Calculations in External Fields in Quantum Chromodynamics. Technical Review, Fortsch. Phys.32 (1984) 585 [INSPIRE].
  90. [90]
    C. Vafa and E. Witten, Restrictions on Symmetry Breaking in Vector-Like Gauge Theories, Nucl. Phys.B 234 (1984) 173 [INSPIRE].
  91. [91]
    C. Vafa and E. Witten, Parity Conservation in QCD, Phys. Rev. Lett.53 (1984) 535.ADSCrossRefGoogle Scholar
  92. [92]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett.B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
  93. [93]
    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev.D 46 (1992) 539 [INSPIRE].
  94. [94]
    R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett.B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
  95. [95]
    S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett.B 96 (1980) 59 [INSPIRE].
  96. [96]
    J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective Action for Composite Operators, Phys. Rev.D 10 (1974) 2428 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  97. [97]
    U. Gürsoy, I. Iatrakis, E. Kiritsis, F. Nitti and A. O’Bannon, The Chern-Simons Diffusion Rate in Improved Holographic QCD, JHEP02 (2013) 119 [arXiv:1212.3894] [INSPIRE].
  98. [98]
    M. Bianchi, O. DeWolfe, D.Z. Freedman and K. Pilch, Anatomy of two holographic renormalization group flows, JHEP01 (2001) 021 [hep-th/0009156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    E. Kiritsis, N. Tetradis and T.N. Tomaras, Induced brane gravity: Realizations and limitations, JHEP08 (2001) 012 [hep-th/0106050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    M. Bianchi and A. Marchetti, Holographic three point functions: One step beyond the tradition, Nucl. Phys.B 686 (2004) 261 [hep-th/0302019] [INSPIRE].
  101. [101]
    M. Bianchi, M. Prisco and W. Mueck, New results on holographic three point functions, JHEP11 (2003) 052 [hep-th/0310129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  102. [102]
    M. Jarvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP03 (2012) 002 [arXiv:1112.1261] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  103. [103]
    D. Areán, I. Iatrakis, M. Järvinen and E. Kiritsis, The discontinuities of conformal transitions and mass spectra of V-QCD, JHEP11 (2013) 068 [arXiv:1309.2286] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    D. Arean, I. Iatrakis, M. Jarvinen and E. Kiritsis, CP-odd sector and θ dynamics in holographic QCD, Phys. Rev.D 96 (2017) 026001 [arXiv:1609.08922] [INSPIRE].
  105. [105]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  106. [106]
    T. Rudelius, Constraints on Axion Inflation from the Weak Gravity Conjecture, JCAP09 (2015) 020 [arXiv:1503.00795] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    B. Heidenreich, M. Reece and T. Rudelius, Weak Gravity Strongly Constrains Large-Field Axion Inflation, JHEP12 (2015) 108 [arXiv:1506.03447] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  108. [108]
    A. Hebecker, P. Henkenjohann and L.T. Witkowski, What is the Magnetic Weak Gravity Conjecture for Axions?, Fortsch. Phys.65 (2017) 1700011 [arXiv:1701.06553] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    M. Dine and P. Draper, Challenges for the Nelson-Barr Mechanism, JHEP08 (2015) 132 [arXiv:1506.05433] [INSPIRE].CrossRefGoogle Scholar
  112. [112]
    M. Millea, L. Knox and B. Fields, New Bounds for Axions and Axion-Like Particles with keV-GeV Masses, Phys. Rev.D 92 (2015) 023010 [arXiv:1501.04097] [INSPIRE].
  113. [113]

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Mathematical Physics GroupUniversity of ViennaViennaAustria
  2. 2.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHerakleioGreece
  3. 3.Dipartimento di Fisica, Università di Roma “Tor Vergata” & I.N.F.N. Sezione di Roma “Tor Vergata”RomaItaly
  4. 4.APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, (UMR du CNRS 7164)Paris Cedex 13France

Personalised recommendations