Journal of High Energy Physics

, 2019:107 | Cite as

Subleading eikonal, AdS/CFT and double stress tensors

  • Manuela Kulaxizi
  • Gim Seng NgEmail author
  • Andrei Parnachev
Open Access
Regular Article - Theoretical Physics


The eikonal phase which determines the Regge limit of the gravitational scat- tering amplitude of a light particle off a heavy one in Minkowski spacetimes admits an expansion in the ratio of the Schwarzschild radius of the heavy particle to the impact parameter. Such an eikonal phase in AdS spacetimes of any dimensionality has been com- puted to all orders and reduces to the corresponding Minkowski result when both the impact parameter and the Schwarzschild radius are much smaller than the AdS radius. The leading term in the AdS eikonal phase can be reproduced in the dual CFT by a single stress tensor conformal block, but the subleading term is a result of an infinite sum of the double stress tensor contributions. We provide a closed form expression for the OPE coef- ficients of the leading twist double stress tensors in four spacetime dimensions and perform the sum to compute the corresponding lightcone behavior of a heavy-heavy-light-light CFT correlator. The resulting compact expression passes a few nontrivial independent checks. In particular, it agrees with the subleading eikonal phase at large impact parameter.


AdS-CFT Correspondence Black Holes Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    C.M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel.17 (2014) 4 [arXiv:1403.7377] [INSPIRE].zbMATHCrossRefGoogle Scholar
  2. [2]
    S.B. Giddings, The gravitational S-matrix: Erice lectures, Subnucl. Ser.48 (2013) 93 [arXiv:1105.2036] [INSPIRE].Google Scholar
  3. [3]
    T. Dray and G. ‘t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE].
  4. [4]
    G. ‘t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE].
  5. [5]
    D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies, Phys. Lett.B 197 (1987) 81 [INSPIRE].
  6. [6]
    I.J. Muzinich and M. Soldate, High-Energy Unitarity of Gravitation and Strings, Phys. Rev.D 37 (1988) 359 [INSPIRE].
  7. [7]
    B. Sundborg, High-energy Asymptotics: The One Loop String Amplitude and Resummation, Nucl. Phys.B 306 (1988) 545 [INSPIRE].
  8. [8]
    D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys.B 388 (1992) 570 [hep-th/9203082] [INSPIRE].
  9. [9]
    G. D’Appollonio, P. Di Vecchia, R. Russo and G. Veneziano, High-energy string-brane scattering: Leading eikonal and beyond, JHEP11 (2010) 100 [arXiv:1008.4773] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys.B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].
  11. [11]
    R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE].
  12. [12]
    N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Planté and P. Vanhove, Bending of Light in Quantum Gravity, Phys. Rev. Lett.114 (2015) 061301 [arXiv:1410.7590] [INSPIRE].
  13. [13]
    N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, L. Plante and P. Vanhove, Light-like Scattering in Quantum Gravity, JHEP11 (2016) 117 [arXiv:1609.07477] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP01 (2017) 052 [arXiv:1611.02172] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE].
  16. [16]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
  17. [17]
    C. Cheung, I.Z. Rothstein and M.P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett.121 (2018) 251101 [arXiv:1808.02489] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables and Classical Scattering, JHEP02 (2019) 137 [arXiv:1811.10950] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order, Phys. Rev. Lett.122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev.D 100 (2019) 066028 [arXiv:1904.02667] [INSPIRE].
  21. [21]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  24. [24]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP08 (2007) 019 [hep-th/0611122] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys.B 767 (2007) 327 [hep-th/0611123] [INSPIRE].
  26. [26]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP09 (2007) 037 [arXiv:0707.0120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [INSPIRE].
  28. [28]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge trajectory, JHEP10 (2017) 197 [arXiv:1707.07689] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP12 (2017) 049 [arXiv:1610.09378] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP12 (2017) 013 [arXiv:1705.03453] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Shockwaves from the Operator Product Expansion, JHEP03 (2019) 201 [arXiv:1709.03597] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    D. Meltzer and E. Perlmutter, Beyond a = c: gravitational couplings to matter and the stress tensor OPE, JHEP07 (2018) 157 [arXiv:1712.04861] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    D. Meltzer, Higher Spin ANEC and the Space of CFTs, JHEP07 (2019) 001 [arXiv:1811.01913] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A Bound on Massive Higher Spin Particles, JHEP04 (2019) 056 [arXiv:1811.01952] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    A. Belin, D.M. Hofman and G. Mathys, Einstein gravity from ANEC correlators, JHEP08 (2019) 032 [arXiv:1904.05892] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence and a Stringy Equivalence Principle, arXiv:1904.05905 [INSPIRE].
  40. [40]
    M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadíc, Black Holes and Conformal Regge Bootstrap, arXiv:1904.00060 [INSPIRE].
  42. [42]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, JHEP05 (2019) 212 [arXiv:1811.05710] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    A.L. Fitzpatrick and K.-W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP08 (2019) 138 [arXiv:1903.05306] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    Y.-Z. Li, Z.-F. Mai and H. Lü, Holographic OPE Coefficients from AdS Black Holes with Matters, JHEP09 (2019) 001 [arXiv:1905.09302] [INSPIRE].
  47. [47]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  50. [50]
    A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of Conformal Blocks, JHEP09 (2015) 019 [arXiv:1504.01737] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    H. Maxfield, A view of the bulk from the worldline, arXiv:1712.00885 [INSPIRE].
  52. [52]
    A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Hawking from Catalan, JHEP05 (2016) 069 [arXiv:1510.00014] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    J.A. Minahan and R. Pereira, Three-point correlators from string amplitudes: Mixing and Regge spins, JHEP04 (2015) 134 [arXiv:1410.4746] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    G. Arutyunov, S. Frolov and A.C. Petkou, Operator product expansion of the lowest weight CPOs in \( \mathcal{N} \) = 4 SYM4 at strong coupling, Nucl. Phys.B 586 (2000) 547 [Erratum ibid.B 609 (2001) 539] [hep-th/0005182] [INSPIRE].
  56. [56]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys.177 (1996) 381 [hep-th/9412229] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev.D 94 (2016) 126019 [arXiv:1604.05327] [INSPIRE].
  58. [58]
    A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Thermal Correlation Functions of KdV Charges in 2D CFT, JHEP02 (2019) 044 [arXiv:1810.11053] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    A. Maloney, G.S. Ng, S.F. Ross and I. Tsiares, Generalized Gibbs Ensemble and the Statistics of KdV Charges in 2D CFT, JHEP03 (2019) 075 [arXiv:1810.11054] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    A. Dymarsky and K. Pavlenko, Generalized Gibbs Ensemble of 2d CFTs at large central charge in the thermodynamic limit, JHEP01 (2019) 098 [arXiv:1810.11025] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    A. Dymarsky and K. Pavlenko, Exact generalized partition function of 2D CFTs at large central charge, JHEP05 (2019) 077 [arXiv:1812.05108] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    A. Dymarsky and K. Pavlenko, Generalized Eigenstate Thermalization Hypothesis in 2D Conformal Field Theories, Phys. Rev. Lett.123 (2019) 111602 [arXiv:1903.03559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Datta, P. Kraus and B. Michel, Typicality and thermality in 2d CFT, JHEP07 (2019) 143 [arXiv:1904.00668] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    E.M. Brehm and D. Das, On KdV characters in large c CFTs, arXiv:1901.10354 [INSPIRE].
  65. [65]
    R.G. Leigh, A.C. Petkou, P.M. Petropoulos and P.K. Tripathy, The Geroch group in Einstein spaces, Class. Quant. Grav.31 (2014) 225006 [arXiv:1403.6511] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    P.M. Petropoulos and K. Siampos, Integrability, Einstein spaces and holographic fluids, arXiv:1510.06456 [INSPIRE].
  67. [67]
    A.C. Petkou, P.M. Petropoulos and K. Siampos, Geroch group for Einstein spaces and holographic integrability, PoS(PLANCK2015)104 (2015) [arXiv:1512.04970] [INSPIRE].
  68. [68]
    D. Klemm, M. Nozawa and M. Rabbiosi, On the integrability of Einstein-Maxwell-(A)dS gravity in the presence of Killing vectors, Class. Quant. Grav.32 (2015) 205008 [arXiv:1506.09017] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    J. Gath, A. Mukhopadhyay, A.C. Petkou, P.M. Petropoulos and K. Siampos, Petrov Classification and holographic reconstruction of spacetime, JHEP09 (2015) 005 [arXiv:1506.04813] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    Y. Chervonyi and O. Lunin, Killing(-Yano) Tensors in String Theory, JHEP09 (2015) 182 [arXiv:1505.06154] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    V. Frolov, P. Krtous and D. Kubiznak, Black holes, hidden symmetries and complete integrability, Living Rev. Rel.20 (2017) 6 [arXiv:1705.05482] [INSPIRE].zbMATHCrossRefGoogle Scholar
  72. [72]
    I. Bena, D. Turton, R. Walker and N.P. Warner, Integrability and Black-Hole Microstate Geometries, JHEP11 (2017) 021 [arXiv:1709.01107] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    J.L. Burchnall and T.W. Chaundy, The Hypergeometric Identities of Cayley, Orr and Bailey, Proc. Lond. Math. Soc.s2-50 (1948) 56.Google Scholar
  74. [74]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].
  75. [75]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York (1997).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Manuela Kulaxizi
    • 1
  • Gim Seng Ng
    • 1
    Email author
  • Andrei Parnachev
    • 1
  1. 1.School of Mathematics and Hamilton Mathematics InstituteTrinity College DublinDublin 2Ireland

Personalised recommendations