Advertisement

Journal of High Energy Physics

, 2019:106 | Cite as

A near-minimal leptoquark model for reconciling flavour anomalies and generating radiative neutrino masses

  • Innes BigaranEmail author
  • John Gargalionis
  • Raymond R. Volkas
Open Access
Regular Article - Theoretical Physics
  • 24 Downloads

Abstract

We introduce two scalar leptoquarks, the SU(2)L isosinglet denoted ϕ ∼ (3,1, −1/3) and the isotriplet φ ∼ (3,3, −1/3), to explain observed deviations from the standard model in semi-leptonic B-meson decays. We explore the regions of parameter space in which this model accommodates the persistent tensions in the decay observables RD(), RK () , and angular observables in b → sμμ transitions. Additionally, we exploit the role of these exotics in existing models for one-loop neutrino mass generation derived from ∆L = 2 effective operators. Introducing the vector-like quark χ ∼ (3,2, −5/6) necessary for lepton-number violation, we consider the contribution of both leptoquarks to the generation of radiative neutrino mass. We find that constraints permit simultaneously accommodating the flavour anomalies while also explaining the relative smallness of neutrino mass without the need for cancellation between leptoquark contributions. A characteristic prediction of our model is a rate of muon-electron conversion in nuclei fixed by the anoma- lies in b → sμμ and neutrino mass; the COMET and Mu2e experiments will thus test and potentially falsify our scenario. The model also predicts signatures that will be tested at the LHC and Belle II.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Y. Cai et al., From the trees to the forest: a review of radiative neutrino mass models, Front. Phys.5 (2017) 63 [arXiv:1706.08524].CrossRefGoogle Scholar
  2. [2]
    LHCb collaboration, Angular analysis of the B 0→ K 0μ +μ decay using 3 fb 1of integrated luminosity, JHEP02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  3. [3]
    CMS collaboration, Angular analysis of the decay B +→ K +μ +μ in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev.D 98 (2018) 112011 [arXiv:1806.00636] [INSPIRE].
  4. [4]
    LHCb collaboration, Measurement of the ratio of the B 0→ D ∗−τ +ν τand B 0→ D ∗−μ +ν μbranching fractions using three-prong τ -lepton decays, Phys. Rev. Lett.120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
  5. [5]
    LHCb collaboration, Measurement of the ratio of branching fractions β(\( \overline{B} \) 0→ D +τ \( \overline{v} \)τ )(\( \overline{B} \) 0→ D +μ \( \overline{v} \) μ), Phys. Rev. Lett.115 (2015) 111803 [Erratum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  6. [6]
    BaBar collaboration, Evidence for an excess of \( \overline{B} \)→ D ()τ \( \overline{v} \) τdecays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  7. [7]
    BaBar collaboration, Measurement of an excess of \( \overline{B} \)→ D ()τ \( \overline{v} \) τdecays and implications for charged Higgs bosons, Phys. Rev.D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  8. [8]
    Belle collaboration, Measurement of the branching ratio of \( \overline{B} \) → D() τ \( \overline{v} \) τ relative to \( \overline{B} \) → D() \( \overline{v} \) decays with hadronic tagging at Belle, Phys. Rev.D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  9. [9]
    Belle collaboration, Measurement of the branching ratio of \( \overline{B} \) 0→ D () τ \( \overline{v} \) τ relative to \( \overline{B} \) 0→ D \( \overline{v} \) decays with a semileptonic tagging method, Phys. Rev.D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  10. [10]
    Belle collaboration, Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B} \) 0→ D ()τ \( \overline{v} \) τ, Phys. Rev. Lett.118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  11. [11]
    LHCb collaboration, Test of lepton universality with \( \overline{B} \) 0→ K ℓ+ℓdecays, JHEP08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  12. [12]
    Belle collaboration, Lepton-flavor-dependent angular analysis of B → K+ℓ+ℓ, Phys. Rev. Lett.118(2017) 111801 [arXiv:1612.05014] [INSPIRE].
  13. [13]
    LHCb collaboration, Test of lepton universality using B +→ K+ℓ+ℓdecays, Phys. Rev. Lett.113(2014) 151601 [arXiv:1406.6482] [INSPIRE].
  14. [14]
    I. Esteban et al., Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23, δ CPand the mass ordering, JHEP01 (2019) 106 [arXiv:1811.05487] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Ricciardi, Semileptonic and leptonic B decays, circa 2016, Mod. Phys. Lett.A 32 (2017) 1730005 [arXiv:1610.04387] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Ricciardi, Semileptonic decays and |V xb| determinations, EPJ Web Conf.182 (2018) 02104 [arXiv:1712.06988] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    LHCb collaboration, Search for lepton-universality violation in B +→ K+ℓ+ℓ decays, Phys. Rev. Lett.122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].
  18. [18]
    M. Bordone, G. Isidori and A. Pattori, On the standard model predictions for RK and R K∗, Eur. Phys. J.C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of B → K ()μ +μ decays, JHEP06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
  20. [20]
    LHCb collaboration, Angular analysis and differential branching fraction of the decay \( B\frac{0}{s} \)→ ϕμ +μ , JHEP09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
  21. [21]
    CMS collaboration, Angular analysis of the decay B 0→ K 0μ +μ from pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett.B 753 (2016) 424 [arXiv:1507.08126] [INSPIRE].
  22. [22]
    ATLAS collaboration, Angular analysis of \( B\frac{0}{d} \)→ K μ +μ decays in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP10 (2018) 047 [arXiv:1805.04000] [INSPIRE].
  23. [23]
    CMS collaboration, Measurement of angular parameters from the decay B0 K0μ +μ in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett.B 781 (2018) 517 [arXiv:1710.02846] [INSPIRE].
  24. [24]
    G. D’Amico et al., Flavour anomalies after the RK ∗ measurement, JHEP09 (2017) 010 [arXiv:1704.05438] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.-S. Geng et al., Towards the discovery of new physics with lepton-universality ratios of b → sℓℓ decays, Phys. Rev.D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Capdevila et al., Patterns of new physics in b → s+transitions in the light of recent data, JHEP01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting hints for lepton flavor universality violation, Phys. Rev.D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Ciuchini et al., On flavourful Easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J.C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    G. Hiller and I. Nisandzic, R Kand R K∗beyond the standard model, Phys. Rev.D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Aebischer et al., B-decay discrepancies after Moriond 2019, arXiv:1903.10434 [INSPIRE].
  31. [31]
    M. Ciuchini et al., New Physics in b → s+confronts new data on lepton universality, Eur. Phys. J.C 79 (2019) 719 [arXiv:1903.09632] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Kowalska, D. Kumar and E.M. Sessolo, Implications for new physics in b → sμμ transitions after recent measurements by Belle and LHCb, arXiv:1903.10932 [INSPIRE].
  33. [33]
    A.K. Alok, A. Dighe, S. Gangal and D. Kumar, Continuing search for new physics in b → sμμ decays: two operators at a time, JHEP06 (2019) 089 [arXiv:1903.09617] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    Flavour Lattice Averaging Group collaboration, FLAG review 2019, arXiv:1902.08191 [INSPIRE].
  35. [35]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J.C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  36. [36]
    Belle collaboration, Measurement of ℛ(D) and ℛ (D ) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].
  37. [37]
    S. Fajfer, J.F. Kamenik and I. Nisandzic, On the B → D τ \( \overline{v} \) τsensitivity to new physics, Phys. Rev.D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].
  38. [38]
    Belle collaboration, Test of lepton flavor universality in B → K + decays at Belle, arXiv:1904.02440 [INSPIRE].
  39. [39]
    C. Murgui, A. Peñuelas, M. Jung and A. Pich, Global fit to b → cτ ν transitions, arXiv:1904.09311 [INSPIRE].
  40. [40]
    D. Bardhan and D. Ghosh, B-meson charged current anomalies: the post-Moriond 2019 status, Phys. Rev.D 100 (2019) 011701 [arXiv:1904.10432] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Blanke et al., Impact of polarization observables and Bc → τ ν on new physics explanations of the b → cτ ν anomaly, Phys. Rev.D 99 (2019) 075006 [arXiv:1811.09603] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Blanke et al., Addendum to “Impact of polarization observables and Bc → τ ν on new physics explanations of the b → cτ ν anomaly”, Phys. Rev.D 100 (2019) 035035 [arXiv:1905.08253] [INSPIRE].ADSGoogle Scholar
  43. [43]
    LHCb collaboration, Measurement of the ratio of branching fractions β(B \( \frac{+}{c} \)→ J/ψτ + ν τ)/ β(B \( \frac{+}{c} \)→ J/ψμ +ν μ), Phys. Rev. Lett.120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].
  44. [44]
    A.Yu. Anisimov, I.M. Narodetsky, C. Semay and B. Silvestre-Brac, The Bc meson lifetime in the light front constituent quark model, Phys. Lett.B 452 (1999) 129 [hep-ph/9812514] [INSPIRE].
  45. [45]
    V.V. Kiselev, Exclusive decays and lifetime of B cmeson in QCD sum rules, hep-ph/0211021 [INSPIRE].
  46. [46]
    M.A. Ivanov, J.G. Korner and P. Santorelli, Exclusive semileptonic and nonleptonic decays of the B cmeson, Phys. Rev.D 73 (2006) 054024 [hep-ph/0602050] [INSPIRE].
  47. [47]
    E. Hernandez, J. Nieves and J.M. Verde-Velasco, Study of exclusive semileptonic and non-leptonic decays of B cin a nonrelativistic quark model, Phys. Rev.D 74 (2006) 074008 [hep-ph/0607150] [INSPIRE].
  48. [48]
    T. Huang and F. Zuo, Semileptonic Bc decays and charmonium distribution amplitude, Eur. Phys. J.C 51 (2007) 833 [hep-ph/0702147] [INSPIRE].
  49. [49]
    W. Wang, Y.-L. Shen and C.-D. Lu, Covariant light-front approach for B(c) transition form factors, Phys. Rev.D 79 (2009) 054012 [arXiv:0811.3748] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Issadykov and M.A. Ivanov, The decays B c→ J/ψ + \( A\overline{\ell} \)v and B c→ J/ψ + π(K) in covariant confined quark model, Phys. Lett.B 783 (2018) 178 [arXiv:1804.00472] [INSPIRE].
  51. [51]
    W.-F. Wang, Y.-Y. Fan and Z.-J. Xiao, Semileptonic decays B c (η c, J/Ψ)lν in the perturbative QCD approach, Chin. Phys.C 37 (2013) 093102 [arXiv:1212.5903] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A.K. Alok et al., New physics solutions for R Dand R D∗, JHEP09 (2018) 152 [arXiv:1710.04127] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Azatov et al., Anatomy of b → cτν anomalies, JHEP11 (2018) 187 [arXiv:1805.03209] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    X.-Q. Hu, S.-P. Jin and Z.-J. Xiao, Semileptonic decays B c (η c, J/ψ)l \( \overline{v} \) lin the “PQCD + Lattice” approach, arXiv:1904.07530 [INSPIRE].
  55. [55]
    D. Leljak, B. Melic and M. Patra, On lepton flavour universality in semileptonic B c→ η c, J/ψ decays, JHEP05 (2019) 094 [arXiv:1901.08368] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K. Azizi, Y. Sarac and H. Sundu, Lepton flavor universality violation in semileptonic tree level weak transitions, Phys. Rev.D 99 (2019) 113004 [arXiv:1904.08267] [INSPIRE].ADSGoogle Scholar
  57. [57]
    Belle collaboration, Measurement of the D ∗−polarization in the decay B 0→ D ∗−τ +ν τ, in the proceedings of the 10thInternational Workshop on the CKM Unitarity Triangle (CKM 2018), September 17–21, Heidelberg, Germany (2019), arXiv:1903.03102 [INSPIRE].
  58. [58]
    P. Asadi, M.R. Buckley and D. Shih, Asymmetry observables and the origin of R D() anomalies, Phys. Rev.D 99 (2019) 035015 [arXiv:1810.06597] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R. Alonso, J. Martin Camalich and S. Westhoff, Tau properties in B → Dτ ν from visible final-state kinematics, Phys. Rev.D 95 (2017) 093006 [arXiv:1702.02773] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Muon g-2 collaboration, The muon g − 2 experiment at Fermilab, EPJ Web Conf.137 (2017) 08001 [arXiv:1701.02807] [INSPIRE].
  61. [61]
    T. Blum et al., The muon (g − 2) theory value: present and future, arXiv:1311.2198 [INSPIRE].
  62. [62]
    R.H. Parker et al., Measurement of the fine-structure constant as a test of the standard model, Science360 (2018) 191 [arXiv:1812.04130] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys.B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
  64. [64]
    Y. Cai, J.D. Clarke, M.A. Schmidt and R.R. Volkas, Testing radiative neutrino mass models at the LHC, JHEP02 (2015) 161 [arXiv:1410.0689] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev.D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Bauer and M. Neubert, Minimal leptoquark explanation for the R D() , RK and (g − 2)ganomalies, Phys. Rev. Lett.116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].
  68. [68]
    D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive b → sℓ 1 2modes, JHEP11 (2016) 035 [arXiv:1608.07583] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    Y. Cai, J. Gargalionis, M.A. Schmidt and R.R. Volkas, Reconsidering the one leptoquark solution: flavor anomalies and neutrino mass, JHEP10 (2017) 047 [arXiv:1704.05849] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP11 (2017) 044 [arXiv:1706.07808] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Angelescu, D. Bečirević, D.A. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP10 (2018) 183 [arXiv:1808.08179] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    K.S. Babu and J. Julio, Two-loop neutrino mass generation through leptoquarks, Nucl. Phys.B 841 (2010) 130 [arXiv:1006.1092] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  73. [73]
    P.W. Angel et al., Testable two-loop radiative neutrino mass model based on an LLQd cQd ceffective operator, JHEP10 (2013) 118 [Erratum ibid.11 (2014) 092] [arXiv:1308.0463] [INSPIRE].
  74. [74]
    O. Popov and G.A. White, One Leptoquark to unify them? Neutrino masses and unification in the light of (g − 2)μ, R D(*) and RK anomalies, Nucl. Phys.B 923 (2017) 324 [arXiv:1611.04566] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    C. Hati, G. Kumar, J. Orloff and A.M. Teixeira, Reconciling B-meson decay anomalies with neutrino masses, dark matter and constraints from flavour violation, JHEP11 (2018) 011 [arXiv:1806.10146] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Singirala, S. Sahoo and R. Mohanta, Exploring dark matter, neutrino mass and R K() anomalies in L μ–L τmodel, Phys. Rev.D 99 (2019) 035042 [arXiv:1809.03213] [INSPIRE].
  77. [77]
    K. Cheung, T. Nomura and H. Okada, A three-loop neutrino model with leptoquark triplet scalars, Phys. Lett.B 768 (2017) 359 [arXiv:1701.01080] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    H. P¨as and E. Schumacher, Common origin of RK and neutrino masses, Phys. Rev.D 92 (2015) 114025 [arXiv:1510.08757] [INSPIRE].
  79. [79]
    I. Doršner, S. Fajfer, D.A. Faroughy and N. Košnik, The role of the S 3GUT leptoquark in flavor universality and collider searches, arXiv:1706.07779 [INSPIRE].
  80. [80]
    F.F. Deppisch, S. Kulkarni, H. Päs and E. Schumacher, Leptoquark patterns unifying neutrino masses, flavor anomalies and the diphoton excess, Phys. Rev.D 94 (2016) 013003 [arXiv:1603.07672] [INSPIRE].ADSGoogle Scholar
  81. [81]
    A. Datta, D. Sachdeva and J. Waite, Unified explanation of b → sμ +μ anomalies, neutrino masses and B → πK puzzle, Phys. Rev.D 100 (2019) 055015 [arXiv:1905.04046] [INSPIRE].ADSGoogle Scholar
  82. [82]
    S.-Y. Guo et al., Interpreting the R K()anomaly in the colored Zee-Babu model, Nucl. Phys.B 928 (2018) 435 [arXiv:1707.00522] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  83. [83]
    O. Popov, M.A. Schmidt and G. White, R2 as a single leptoquark solution to R D() and RK () , Phys. Rev.D 100 (2019) 035028 [arXiv:1905.06339] [INSPIRE].ADSGoogle Scholar
  84. [84]
    I. Doršner et al., Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept.641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    D. Bečirević et al., Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev.D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].ADSGoogle Scholar
  86. [86]
    G. Hiller and M. Schmaltz, RK and future b → sℓℓ physics beyond the standard model opportunities, Phys. Rev.D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
  87. [87]
    G. Kumar, C. Hati, J. Orloff and A.M. Teixeira, Reconciling B-meson anomalies, neutrino masses and dark matter, in the proceedings of the 16thConference on Flavor Physics and CP-violation (FPCP 2018), July 14–18, Hyderabad, India (2018), arXiv:1811.10927 [INSPIRE].
  88. [88]
    S. Kovalenko and I. Schmidt, Proton stability in leptoquark models, Phys. Lett.B 562 (2003) 104 [hep-ph/0210187] [INSPIRE].
  89. [89]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys.B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  90. [90]
    J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun.232 (2018) 71 [arXiv:1712.05298] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    W. Altmannshofer, C. Niehoff, P. Stangl and D.M. Straub, Status of the B → K μ +μ anomaly after Moriond 2017, Eur. Phys. J.C 77 (2017) 377 [arXiv:1703.09189] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B} \)D ()τ \( \overline{v} \), Phys. Rev.D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].
  93. [93]
    D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].
  94. [94]
    W. Porod, F. Staub and A. Vicente, A flavor kit for BSM models, Eur. Phys. J.C 74 (2014) 2992 [arXiv:1405.1434] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  96. [96]
    A. Vicente, Computer tools in particle physics, arXiv:1507.06349 [INSPIRE].
  97. [97]
    J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J.C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett.121 (2018) 211801 [arXiv:1808.02343] [INSPIRE].
  99. [99]
    ATLAS collaboration, Searches for third-generation scalar leptoquarks in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, JHEP06 (2019) 144 [arXiv:1902.08103] [INSPIRE].
  100. [100]
    CMS collaboration, Search for third-generation scalar leptoquarks decaying to a top quark and a τ lepton at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 78 (2018) 707 [arXiv:1803.02864] [INSPIRE].
  101. [101]
    CMS collaboration, Constraints on models of scalar and vector leptoquarks decaying to a quark and a neutrino at \( \sqrt{s} \) = 13 TeV, Phys. Rev.D 98 (2018) 032005 [arXiv:1805.10228] [INSPIRE].
  102. [102]
    CMS collaboration, Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.121 (2018) 241802 [arXiv:1809.05558] [INSPIRE].
  103. [103]
    ATLAS collaboration, Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, Eur. Phys. J.C 79 (2019) 733 [arXiv:1902.00377] [INSPIRE].
  104. [104]
    CMS collaboration, Search for pair production of second-generation leptoquarks at \( \sqrt{s} \) = 13 TeV, Phys. Rev.D 99 (2019) 032014 [arXiv:1808.05082] [INSPIRE].
  105. [105]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb 1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  106. [106]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb 1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  107. [107]
    A. Greljo and D. Marzocca, High-pT dilepton tails and flavor physics, Eur. Phys. J.C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36.1 fb 1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2017-027 (2017).
  109. [109]
    ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  110. [110]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP08 (2013) 106 [arXiv:1306.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    ATLAS collaboration, Search for single production of vector-like quarks decaying into Wb in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP05 (2019) 164 [arXiv:1812.07343] [INSPIRE].
  112. [112]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  113. [113]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev.D 66 (2002) 096002 [Erratum ibid.D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  114. [114]
    T.S. Kosmas, S. Kovalenko and I. Schmidt, Nuclear muon- e- conversion in strange quark sea, Phys. Lett.B 511 (2001) 203 [hep-ph/0102101] [INSPIRE].
  115. [115]
    A. Crivellin and F. Saturnino, Correlating tauonic B decays to the neutron EDM via a scalar leptoquark, arXiv:1905.08257 [INSPIRE].
  116. [116]
    P. Arnan, D. Becirevic, F. Mescia and O. Sumensari, Probing low energy scalar leptoquarks by the leptonic W and Z couplings, JHEP02 (2019) 109 [arXiv:1901.06315] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    S. Fajfer and N. Kǒsnik, Prospects of discovering new physics in rare charm decays, Eur. Phys. J.C 75 (2015) 567 [arXiv:1510.00965] [INSPIRE].
  118. [118]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J.C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    LHCb collaboration, Search for the rare decay D 0→ μ +μ , Phys. Lett.B 725 (2013) 15 [arXiv:1305.5059] [INSPIRE].
  120. [120]
    Belle collaboration, Search for B → hνν̄ decays with semileptonic tagging at Belle, Phys. Rev.D 96 (2017) 091101 [arXiv:1702.03224] [INSPIRE].
  121. [121]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e +e colliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  122. [122]
    UTfit collaboration, Model-independent constraints onF = 2 operators and the scale of new physics, JHEP03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
  123. [123]
    Belle collaboration, Measurement of the decay B → Dℓν in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vcb|, Phys. Rev.D 93 (2016) 032006 [arXiv:1510.03657] [INSPIRE].
  124. [124]
    Belle collaboration, Precise determination of the CKM matrix element |Vcb | with \( \overline{B} \) 0→ D + \( \overline{v} \)decays with hadronic tagging at Belle, arXiv:1702.01521 [INSPIRE].
  125. [125]
    Heavy Flavor Averaging Group (HFAG) collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  126. [126]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B Constrains Explanations for Anomalies in B → D ()τ ν, Phys. Rev. Lett.118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    F. Feruglio, P. Paradisi and O. Sumensari, Implications of scalar and tensor explanations of R D() , JHEP11 (2018) 191 [arXiv:1806.10155] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    A.K. Alok, D. Kumar, S. Kumbhakar and S. Uma Sankar, New physics solutions for b → cτ \( \overline{v} \)anomalies before and after Moriond 2019, arXiv:1903.10486 [INSPIRE].
  129. [129]
    M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B} \)→ D ()τ \( \overline{v} \), Phys. Rev.D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].
  130. [130]
    W. Altmannshofer and D.M. Straub, New physics in b → s transitions after LHC run 1, Eur. Phys. J.C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    SINDRUM II collaboration, A search for muon to electron conversion in muonic gold, Eur. Phys. J.C 47 (2006) 337 [INSPIRE].
  132. [132]
    A. Kurup, The coherent muon to electron transition (comet) experiment, Nucl. Phys. Proc. Suppl.B 218 (2011) 38.ADSCrossRefGoogle Scholar
  133. [133]
    COMET collaboration, Conceptual design report for experimental search for lepton flavor violating μ -e conversion at sensitivity of 1016with a slow-extracted bunched proton beam (COMET), KEK-2009-10 (2009).Google Scholar
  134. [134]
    COMET collaboration, Search for muon to electron conversion at J-PARC, Nucl. Part. Phys. Proc.287-288 (2017) 173 [INSPIRE].
  135. [135]
    COMET collaboration, COMET Phase-I technical design report, arXiv:1812.09018 [INSPIRE].
  136. [136]
    Mu2e collaboration, Mu2e technical design report, arXiv:1501.05241 [INSPIRE].
  137. [137]
    Mu2e collaboration, Mu2e: a search for charged lepton flavor violation in μN → eN Conversion with a Sensitivity < 1016 , PoS(ICHEP2018)583.Google Scholar
  138. [138]
    Mu2e collaboration, Searching for muon to electron conversion: the Mu2e experiment at Fermilab, SciPost Phys. Proc.1 (2019) 038.Google Scholar
  139. [139]
    G. Burdman, E. Golowich, J.L. Hewett and S. Pakvasa, Rare charm decays in the standard model and beyond, Phys. Rev.D 66 (2002) 014009 [hep-ph/0112235] [INSPIRE].
  140. [140]
    N.G. Deshpande and X.-G. He, Consequences of R-parity violating interactions for anomalies in \( \overline{B} \)→ D ()τ \( \overline{v} \)and b → sμ +μ , Eur. Phys. J.C 77 (2017) 134 [arXiv:1608.04817] [INSPIRE].
  141. [141]
    W. Altmannshofer, P.S. Bhupal Dev and A. Soni, R D() anomaly: a possible hint for natural supersymmetry with R-parity violation, Phys. Rev.D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].Google Scholar
  142. [142]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D () ) and b → sμ +μ : the last scalar leptoquarks standing, JHEP09 (2017) 040 [arXiv:1703.09226] [INSPIRE].
  143. [143]
    D. Marzocca, Addressing the B-physics anomalies in a fundamental composite Higgs model, JHEP07 (2018) 121 [arXiv:1803.10972] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys.B 387 (1992) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys.73 (2005) 1160 [hep-ph/0412245] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Particle Physics at the Terascale, School of PhysicsThe University of MelbourneVictoriaAustralia

Personalised recommendations