Journal of High Energy Physics

, 2019:105 | Cite as

Zee model with flavor dependent global U(1) symmetry

  • Takaaki Nomura
  • Kei YagyuEmail author
Open Access
Regular Article - Theoretical Physics


We study a simple extension of the Zee model, in which a discrete Z2 symmetry imposed in the original model is replaced by a global U(1) symmetry retaining the same particle content. Due to the U(1) symmetry with flavor dependent charge assignments, the lepton sector has an additional source of flavor violating Yukawa interactions with a controllable structure, while the quark sector does not at tree level. We show that current neutrino oscillation data can be explained under constraints from lepton flavor violating decays of charged leptons in a successful charge assignment of the U(1) symmetry. In such scenario, we find a characteristic pattern of lepton flavor violating decays of additional Higgs bosons, which can be a smoking gun signature at collider experiments.


Higgs Physics Neutrino Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.67B (1977) 421 [INSPIRE].ADSGoogle Scholar
  2. [2]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys.64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett.93B (1980) 389 [Erratum ibid.B 95 (1980) 461] [INSPIRE].
  5. [5]
    L.M. Krauss, S. Nasri and M. Trodden, A Model for neutrino masses and dark matter, Phys. Rev.D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].ADSGoogle Scholar
  6. [6]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  7. [7]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning, Phys. Rev. Lett.102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y. Koide, Can the Zee model explain the observed neutrino data?, Phys. Rev.D 64 (2001) 077301 [hep-ph/0104226] [INSPIRE].
  9. [9]
    P.H. Frampton, M.C. Oh and T. Yoshikawa, Zee model confronts SNO data, Phys. Rev.D 65 (2002) 073014 [hep-ph/0110300] [INSPIRE].
  10. [10]
    X.-G. He, Is the Zee model neutrino mass matrix ruled out?, Eur. Phys. J.C 34 (2004) 371 [hep-ph/0307172] [INSPIRE].
  11. [11]
    D. Aristizabal Sierra and D. Restrepo, Leptonic Charged Higgs Decays in the Zee Model, JHEP08 (2006) 036 [hep-ph/0604012] [INSPIRE].
  12. [12]
    X.-G. He and S.K. Majee, Implications of Recent Data on Neutrino Mixing and Lepton Flavour Violating Decays for the Zee Model, JHEP03 (2012) 023 [arXiv:1111.2293] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Herrero-Garćıa, T. Ohlsson, S. Riad and J. Wiŕen, Full parameter scan of the Zee model: exploring Higgs lepton flavor violation, JHEP04 (2017) 130 [arXiv:1701.05345] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Fukuyama, H. Sugiyama and K. Tsumura, Phenomenology in the Zee Model with the A 4Symmetry, Phys. Rev.D 83 (2011) 056016 [arXiv:1012.4886] [INSPIRE].
  15. [15]
    S. Kanemura, T. Shindou and H. Sugiyama, R-Parity Conserving Supersymmetric Extension of the Zee Model, Phys. Rev.D 92 (2015) 115001 [arXiv:1508.05616] [INSPIRE].
  16. [16]
    G.C. Branco, W. Grimus and L. Lavoura, Relating the scalar flavor changing neutral couplings to the CKM matrix, Phys. Lett.B 380 (1996) 119 [hep-ph/9601383] [INSPIRE].
  17. [17]
    J.M. Alves, F.J. Botella, G.C. Branco, F. Cornet-Gomez, M. Nebot and J.P. Silva, Symmetry Constrained Two Higgs Doublet Models, Eur. Phys. J.C 78 (2018) 630 [arXiv:1803.11199] [INSPIRE].
  18. [18]
    S. Kanemura, T. Kasai, G.-L. Lin, Y. Okada, J.-J. Tseng and C.P. Yuan, Phenomenology of Higgs bosons in the Zee model, Phys. Rev.D 64 (2001) 053007 [hep-ph/0011357] [INSPIRE].
  19. [19]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett.B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
  20. [20]
    Y. Koide and A. Ghosal, Bimaximal neutrino mixing in a Zee type model with badly broken flavor symmetry, Phys. Rev.D 63 (2001) 037301 [hep-ph/0008129] [INSPIRE].
  21. [21]
    A. Ghosal, Y. Koide and H. Fusaoka, Lepton flavor violating Z decays in the Zee model, Phys. Rev.D 64 (2001) 053012 [hep-ph/0104104] [INSPIRE].
  22. [22]
    CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s}=13\kern0.5em TeV, \)Eur. Phys. J.C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
  23. [23]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb 1of proton-proton collision data at \( \sqrt{s}=13\kern0.5em TeV \)collected with the ATLAS experiment, ATLAS-CONF-2019-005.
  24. [24]
    E. Mituda and K. Sasaki, Zee model and phenomenology of lepton sector, Phys. Lett.B 516 (2001) 47 [hep-ph/0103202] [INSPIRE].
  25. [25]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys.73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev.D 66 (2002) 096002 [Erratum ibid.D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  27. [27]
    S. Davidson, Y. Kuno and M. Yamanaka, Selecting μ → e conversion targets to distinguish lepton flavour-changing operators, Phys. Lett.B 790 (2019) 380 [arXiv:1810.01884] [INSPIRE].
  28. [28]
    J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev.D 88 (2013) 055025 [Erratum ibid.D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
  29. [29]
    T. Suzuki, D.F. Measday and J.P. Roalsvig, Total Nuclear Capture Rates for Negative Muons, Phys. Rev.C 35 (1987) 2212 [INSPIRE].
  30. [30]
    MEG collaboration, Search for the lepton flavour violating decay μ + e+γ with the full dataset of the MEG experiment, Eur. Phys. J.C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  31. [31]
    BaBar collaboration, Searches for Lepton Flavor Violation in the Decays τ ±→ e ±γ and τ ±→ μ ±γ, Phys. Rev. Lett.104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  32. [32]
    MEG collaboration, The quest for μ → eγ: present and future, Hyperfine Interact.239 (2018) 58 [arXiv:1811.05921] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept.731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    SINDRUM collaboration, Search for the Decay μ +→ e +e +e , Nucl. Phys.B 299 (1988) 1 [INSPIRE].
  35. [35]
    K. Hayasaka et al., Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau- Pairs, Phys. Lett.B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].
  36. [36]
    SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold, Eur. Phys. J.C 47 (2006) 337 [INSPIRE].
  37. [37]
    R. Coy and M. Frigerio, Effective approach to lepton observables: the seesaw case, Phys. Rev.D 99 (2019) 095040 [arXiv:1812.03165] [INSPIRE].
  38. [38]
    M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE].
  40. [40]
    COMET collaboration, A search for muon-to-electron conversion at J-PARC: The COMET experiment, PTEP2013 (2013) 022C01 [INSPIRE].
  41. [41]
    Mu2e collaboration, Proposal to search for μ N → e N with a single event sensitivity below 1016, FERMILAB-PROPOSAL-0973 (2008).
  42. [42]
    Q.-H. Cao, G. Li, K.-P. Xie and J. Zhang, Searching for Weak Singlet Charged Scalar at the Large Hadron Collider, Phys. Rev.D 97 (2018) 115036 [arXiv:1711.02113] [INSPIRE].
  43. [43]
    Q.-H. Cao, G. Li, K.-P. Xie and J. Zhang, Searching for weak singlet charged scalars at lepton colliders, Phys. Rev.D 99 (2019) 015027 [arXiv:1810.07659] [INSPIRE].
  44. [44]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev.D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].
  45. [45]
    CMS collaboration, Search for lepton flavour violating decays of the Higgs boson to eτ and eμ in proton-proton collisions at \( \sqrt{s}=13\kern0.5em TeV, \)Phys. Lett.B 763 (2016) 472 [arXiv:1607.03561] [INSPIRE].
  46. [46]
    CMS collaboration, Search for lepton flavour violating decays of the Higgs boson to μτ and eτ in proton-proton collisions at \( \sqrt{s}=13\kern0.5em TeV, \)JHEP06 (2018) 001 [arXiv:1712.07173] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of PhysicsSeoulKorea
  2. 2.Department of PhysicsOsaka UniversityOsakaJapan

Personalised recommendations