Advertisement

Yangian invariants and cluster adjacency in \( \mathcal{N} \) = 4 Yang-Mills

  • Jorge Mago
  • Anders Schreiber
  • Marcus SpradlinEmail author
  • Anastasia Volovich
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

We conjecture that every rational Yangian invariant in \( \mathcal{N} \) = 4 SYM theory satisfies a recently introduced notion of cluster adjacency. We provide evidence for this conjecture by using the Sklyanin Poisson bracket on Gr(4, n) to check numerous examples.

Keywords

Scattering Amplitudes Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Golden et al., Motivic amplitudes and cluster coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Golden and M. Spradlin, The differential of all two-loop MHV amplitudes in \( \mathcal{N} \) = 4 Yang-Mills theory, JHEP09 (2013) 111 [arXiv:1306.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Golden and M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, JHEP02 (2015) 002 [arXiv:1411.3289] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    V. Del Duca et al., Multi-Regge kinematics and the moduli space of Riemann spheres with marked points, JHEP08 (2016) 152 [arXiv:1606.08807] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys.A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Golden and M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude in \( \mathcal{N} \) = 4 SYM, JHEP08 (2014) 154 [arXiv:1406.2055] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Harrington and M. Spradlin, Cluster functions and scattering amplitudes for six and seven points, JHEP07 (2017) 016 [arXiv:1512.07910] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Golden and A.J. Mcleod, Cluster algebras and the subalgebra constructibility of the seven-particle remainder function, JHEP01 (2019) 017 [arXiv:1810.12181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K. (2016), arXiv:1212.5605 [INSPIRE].
  10. [10]
    J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency properties of scattering amplitudes in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.120 (2018) 161601 [arXiv:1710.10953] [INSPIRE].
  11. [11]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Caron-Huot and S. He, Jumpstarting the all-loop S-matrix of planar N = 4 super Yang-Mills, JHEP07 (2012) 174 [arXiv:1112.1060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L.J. Dixon, M. von Hippel, A.J. McLeod and J. Trnka, Multi-loop positivity of the planar \( \mathcal{N} \) = 4 SYM six-point amplitude, JHEP02 (2017) 112 [arXiv:1611.08325] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L.J. Dixon et al., Heptagons from the Steinmann cluster bootstrap, JHEP02 (2017) 137 [arXiv:1612.08976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J. Drummond, J. Foster and Ö. Gürdoğan, Cluster adjacency beyond MHV, JHEP03 (2019) 086 [arXiv:1810.08149] [INSPIRE].
  20. [20]
    J. Drummond, J. Foster, Ö. Gürdoğan and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP03 (2019) 087 [arXiv:1812.04640] [INSPIRE].
  21. [21]
    S. Caron-Huot et al., Six-Gluon amplitudes in planar \( \mathcal{N} \) = 4 super-Yang-Mills theory at six and seven loops, JHEP08 (2019) 016 [arXiv:1903.10890] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Golden, A.J. McLeod, M. Spradlin and A. Volovich, The Sklyanin bracket and cluster adjacency at all multiplicity, JHEP03 (2019) 195 [arXiv:1902.11286] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren, Helv. Phys. Acta33 (1960) 257.MathSciNetzbMATHGoogle Scholar
  24. [24]
    O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren II, Helv. Phys. Acta33 (1960) 347.MathSciNetzbMATHGoogle Scholar
  25. [25]
    K.E. Cahill and H.P. Stapp, Optical theorems and Steinmann relations, Annals Phys.90 (1975) 438 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl.16 (1982) 263 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Gekhtman, M.Z. Shapiro and A.D. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J.3 (2003) 899 [math/0208033].
  28. [28]
    T. Lukowski, M. Parisi, M. Spradlin and A. Volovich, Cluster adjacency for m = 2 Yangian invariants, arXiv:1908.07618 [INSPIRE].
  29. [29]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    B. Leclerc and A. Zelevinsky, Quasicommuting families of quantum Plücker coordinates, AMS Trans.181 (1998) 85.zbMATHGoogle Scholar
  32. [32]
    S. Oh, A. Postnikov and D. E. Speyer, Weak separation and plabic graphs, Proc. Lond. Math. Soc.110 (2015) 721 [arXiv:1109.4434].MathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Vergu, Polylogarithm identities, cluster algebras and the \( \mathcal{N} \) = 4 supersymmetric theory, 2015, arXiv:1512.08113 [INSPIRE].
  34. [34]
    M.F. Sohnius and P.C. West, Conformal invariance in \( \mathcal{N} \) = 4 supersymmetric Yang-Mills theory, Phys. Lett.B 100 (1981) 245.Google Scholar
  35. [35]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP05 (2009) 046 [arXiv:0902.2987] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP03 (2010) 036 [arXiv:0909.0483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, JHEP01 (2011) 108 [arXiv:0912.3249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP01 (2011) 049 [arXiv:0912.4912] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J.M. Drummond and L. Ferro, Yangians, Grassmannians and T-duality, JHEP07 (2010) 027 [arXiv:1001.3348] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    J.M. Drummond and L. Ferro, The Yangian origin of the Grassmannian integral, JHEP12 (2010) 010 [arXiv:1002.4622] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S.K. Ashok and E. Dell’Aquila, On the classification of residues of the Grassmannian, JHEP10 (2011) 097 [arXiv:1012.5094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J.L. Bourjaily, Positroids, plabic graphs and scattering amplitudes in Mathematica, arXiv:1212.6974 [INSPIRE].
  44. [44]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett.56 (1986) 2459 [INSPIRE].
  45. [45]
    V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett.B 214 (1988) 215 [INSPIRE].
  46. [46]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP04 (2009) 018 [arXiv:0808.2475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    L. Lippstreu, J. Mago, M. Spradlin and A. Volovich, Weak separation, positivity and extremal Yangian invariants, JHEP09 (2019) 093 [arXiv:1906.11034] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Jorge Mago
    • 1
  • Anders Schreiber
    • 1
  • Marcus Spradlin
    • 2
    Email author
  • Anastasia Volovich
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidenceU.S.A.
  2. 2.Department of Physics and Brown Theoretical Physics CenterBrown UniversityProvidenceU.S.A.

Personalised recommendations