Advertisement

Massive on-shell supersymmetric scattering amplitudes

  • Aidan Herderschee
  • Seth Koren
  • Timothy TrottEmail author
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

We introduce a manifestly little group covariant on-shell superspace for massive particles in four dimensions using the massive spinor helicity formalism. This enables us to construct massive on-shell superfields and fully utilize on-shell symmetry considerations to derive all possible \( \mathcal{N} \) = 1 three-particle amplitudes for particles of spin as high as one, as well as some simple amplitudes for particles of any spin. Throughout, the conceptual and computational simplicity of this approach is exhibited.

Keywords

Scattering Amplitudes Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    T. Cohen, H. Elvang and M. Kiermaier, On-shell constructibility of tree amplitudes in general field theories, JHEP 04 (2011) 053 [arXiv:1010 .0257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Conde and A. Marzolla, Lorentz Constraints on Massive Three-Point Amplitudes, JHEP09 (2016) 041 [arXiv:1601.08113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Schwinn and S. Weinzierl, SUSY ward identities for multi-gluon helicity amplitudes with massive quarks, JHEP03 (2006) 030 [hep-th/0602012] [inSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Kleiss and W.J. Stirling, Spinor Techniques for Calculating pp → w ±/Z 0+Jets, Nucl. Phys.B 262 (1985) 235 [inSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Dittmaier, Weyl-van der Waerden formalism/or helicity amplitudes of massive particles, Phys. Rev.D 59 (1998) 016007 [hep-ph/9805445] [inSPIRE].ADSGoogle Scholar
  6. [6]
    N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, arXiv: 1709.04891 [INSPIRE].
  7. [7]
    Y. Shadmi and Y. Weiss, Effective Field Theory Amplitudes the On-Shell Way: Scalar and Vector Couplings to Gluons, JHEP02 (2019) 165 [arXiv:1809. 09644] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Elvang and Y. t. Huang, Scattering Amplitudes, to be published by Cambridge University Press, Cambridge U.S.A. (2015), arXiv:1308 . 1697 [INSPIRE].
  9. [9]
    R.H. Boels and C. Schwinn, On-shell supersymmetry for massive multiplets, Phys. Rev.D 84 (2011) 065006 [arXiv:1104.2280] [inSPIRE].ADSGoogle Scholar
  10. [10]
    M. Srednicki, Quantum field theory, Cambridge University Press, Cambridge U.S.A. (2007).CrossRefGoogle Scholar
  11. [11]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).zbMATHGoogle Scholar
  12. [12]
    S. Ferrara, C.A. Savoy and B. Zumino, General Massive Multiplets in Extended Supersymmetry, Phys. Lett.B 100 (1981) 393 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Fayet, Spontaneous Generation of Massive Multiplets and Central Charges in Extended Supersymmetric Theories, Nucl. Phys.B 149 (1979) 137 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Herderschee, S. Koren and T. Trott, Constructing \( \mathcal{N} \) = 4 Coulomb branch superamplitudes, JHEP08 (2019) 107 [arXiv: 1902 . 07205] [ inSPIRE].
  15. [15]
    S. Caron-Huot and Z. Zahraee, Integrability of Black Hole Orbits in Ma ximal Supergravity, JHEP07 (2019) 179 [arXiv:1810 .04694] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Elvang, Y.-t. Huang and C. Peng, On-shell superamplitudes in N < 4 SYM, JHEP09 (2011) 031 [arXiv:1102.4843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett.B 214 (1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E. Witten, Perturbativ e gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory ?, JHEP09 (2010) 016 [arXiv:0808.1446] [ inSPIRE].
  20. [20]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scatt ering amplitudes in \( \mathcal{N} \) = 4 super- Yang-Mills theory, Nucl. Phys.B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Brandhuber, P. Heslop and G. Travaglini, A Note on dual superconformal symmetry of the \( \mathcal{N} \)= 4 super Yang-Mills S-matrix, Phys. Rev.D 78 (2008) 125005 [arXiv:0807 . 4097] [INSPIRE].
  22. [22]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in \( \mathcal{N} \)= 4 SYM, JHEP04 (2009) 018 [arXiv:0808.2475] [ inSPIRE].
  23. [23]
    S. He and T. McLoughlin, On All-loop Integrands of Scattering Amplitudes in Planar \( \mathcal{N} \) = 4 SYM, JHEP 02 (2011) 116 [arXiv:1010.6256] [ inSPIRE].
  24. [24]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar \( \mathcal{N} \) = 4 SYM, JHEP 01 (2011) 041 [arXiv: 1008 .2958] [inSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Cachazo, A. Guevara, M. Heydeman, S. Mizera, J.H. Schwarz and C. Wen, The S Matrix of 6D Super Yang-Mills and Maximal Supergravity from Rational Maps, JHEP 09 (2018) 125 [arXiv:1805 .11111] [inSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward Identities forSuperamplitudes, JHEP 10 (2010) 103 [arXiv:0911.3169] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv: 0812 .1594] [inSPIRE].
  28. [28]
    S. Weinberg, The quantum theory of fields. Volume 3: Supersymmetry, Cambridge University Press, Cambridge U.S.A. (2013).Google Scholar
  29. [29]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the S Matrix, Phys. Rev. D 10 (1974) 1145 [ Erratum ibid. D 11 (1975) 972] [inSPIRE].
  30. [30]
    S.L. Adler, Collinearity constraints for on-shell massless particle three-point functions and implications for allowed-forbidden n + 1-point functions, Phys. Rev. D 93 (2016) 065028 [arXiv: 1602 .05060] [inSPIRE].
  31. [31]
    D.A. McGady and L. Rodina, Higher-spin massless S-matrices in four-dimensions, Phys. Rev. D 90 (2014) 084048 [arXiv:1311.2938] [inSPIRE].ADSGoogle Scholar
  32. [32]
    S. Ferrara and E. Remiddi, Absence of the Anomalous Magnetic Moment in a Supersymmetric Abelian Gauge Theory, Phys. Lett. B 53 (1974) 347 [inSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.C. Schuster and N. Toro, Constructing the Tree-Level Yang-Mills S-matrix Using Complex Factorization, JHEP 06 (2009) 079 [arXiv:0811.3207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    L. Andrianopoli, S. Ferrara and M.A. Lled6, Axion gauge symmetries and generalized Chern-Simons terms in \( \mathcal{N} \)= 1 supersymmetric theories, JHEP 04 (2004) 005 [hep-th/0402142] [inSPIRE].
  35. [35]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)'s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P. Anastasopoulos, F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi and Y.S. Stanev, Minimal Anomalous U(1)' Extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv: 0804 .1156] [inSPIRE].ADSGoogle Scholar
  37. [37]
    S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree-level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, JHEP 04 (2019) 033 [arXiv:1706 .02314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e +e -w +w -, Nucl. Phys. B 282 (1987) 253 [INSPIRE].
  40. [40]
    P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [inSPIRE].
  41. [41]
    H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP01 (2019) 195 [arXiv: 1806 .06079] [INSPIRE].
  42. [42]
    M.-Z. Chung, Y.-t. Huang, J.- W. Kim and S. Lee, The simplest massive S-matrix: from minimal coupling to Black Holes, JHEP04 (2019) 156 [arXiv: 1812 .08752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Guevara, A. Ochirov and J. Vines, Scattering of Spinning Black Holes from Exponentiated Soft Factors, arXiv: 1812.06895 [INSPIRE].
  44. [44]
    J. Plefka, T. Schuster and V. Verschinin, From Six to Four and More: Massless and Massive Maximal Super Yang-Mills Amplitudes in 6d and 4d and their Hidden Symmetries, JHEP01 (2015) 098 [arXiv:1405.7248] [inSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H. Georgi, Lie algebras in particle physics, Front. Phys. 54 (1999) 1 [inSPIRE].MathSciNetGoogle Scholar
  46. [46]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [inSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Schwinn and S. Weinzierl, On-shell recursion relations for all Born QCD amplitudes, JHEP04 (2007) 072 [hep-ph/0703021] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Ochirov, Helicity amplitudes for QCD with massive quarks, JHEP04 (2018) 089 [arXiv: 1802 .06730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrcek, Recursion relations for gauge theory amplitudes with massive particles, JHEP07 (2005) 025 [hep-th/0504159] [inSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Leinweber Center for Theoretical Physics, Randall Laboratory of Physics, Department of PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations