Advertisement

Discrete symmetries in dimer diagrams

  • Eduardo García-ValdecasasEmail author
  • Alessandro Mininno
  • Angel M. Uranga
Open Access
Regular Article - Theoretical Physics
  • 31 Downloads

Abstract

We apply dimer diagram techniques to uncover discrete global symmetries in the fields theories on D3-branes at singularities given by general orbifolds of general toric Calabi-Yau threefold singularities. The discrete symmetries are discrete Heisenberg groups, with two ZN generators A, B with commutation AB = C BA, with C a central element. This fully generalizes earlier observations in particular orbifolds of C3, the conifold and Yp,q . The solution for any orbifold of a given parent theory follows from a universal structure in the infinite dimer in R2 giving the covering space of the unit cell of the parent theory before orbifolding. The generator A is realized as a shift in the dimer diagram, associated to the orbifold quantum symmetry; the action of B is determined by equations describing a 1-form in the dimer graph in the unit cell of the parent theory with twisted boundary conditions; finally, C is an element of the (mesonic and baryonic) non-anomalous U (1) symmetries, determined by geometric identities involving the elements of the dimer graph of the parent theory. These discrete global symmetries of the quiver gauge theories are holographically dual to discrete gauge symmetries from torsion cycles in the horizon, as we also briefly discuss. Our findings allow to easily construct the discrete symmetries for infinite classes of orbifolds. We provide explicit examples by constructing the discrete symmetries for the infinite classes of general orbifolds of C3, conifold, and complex cones over the toric del Pezzo surfaces, dP1, dP2 and dP3.

Keywords

Brane Dynamics in Gauge Theories D-branes Discrete Symmetries Super- symmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys.B 307 (1988) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L.F. Abbott and M.B. Wise, Wormholes and Global Symmetries, Nucl. Phys.B 325 (1989) 687 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys.B 329 (1990) 387 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev.D 52 (1995) 912 [hep-th/9502069] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.G. Alford and F. Wilczek, Aharonov-Bohm Interaction of Cosmic Strings with Matter, Phys. Rev. Lett.62 (1989) 1071 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett.62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.G. Alford, J. March-Russell and F. Wilczek, Discrete Quantum Hair on Black Holes and the Nonabelian Aharonov-Bohm Effect, Nucl. Phys.B 337 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Preskill and L.M. Krauss, Local Discrete Symmetry and Quantum Mechanical Hair, Nucl. Phys.B 341 (1990) 50 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    M.G. Alford, K. Benson, S.R. Coleman, J. March-Russell and F. Wilczek, The Interactions and Excitations of Nonabelian Vortices, Phys. Rev. Lett.64 (1990) 1632 [Erratum ibid.65 (1990) 668] [INSPIRE].
  11. [11]
    M.G. Alford, S.R. Coleman and J. March-Russell, Disentangling nonAbelian discrete quantum hair, Nucl. Phys.B 351 (1991) 735 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M.G. Alford and J. March-Russell, Discrete gauge theories, Int. J. Mod. Phys.B 5 (1991) 2641 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.G. Alford, K.-M. Lee, J. March-Russell and J. Preskill, Quantum field theory of nonAbelian strings and vortices, Nucl. Phys.B 384 (1992) 251 [hep-th/9112038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett.122(2019) 191601 [arXiv:1810.05337] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].
  16. [16]
    N. Craig, I. Garcia Garcia and S. Koren, Discrete Gauge Symmetries and the Weak Gravity Conjecture, JHEP05 (2019) 140 [arXiv:1812.08181] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  18. [18]
    T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland and the Missing Corner, PoS(TASI2017)015 (2017) [arXiv:1711.00864] [INSPIRE].
  19. [19]
    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    P.G. Camara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP09 (2011) 110 [arXiv:1106.0060] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP12 (2011) 113 [arXiv:1106.4169] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Discrete Gauge Symmetries in Discrete MSSM-like Orientifolds, Nucl. Phys.B 865 (2012) 509 [arXiv:1205.5364] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP04 (2013) 138 [arXiv:1211.5317] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    M. Berasaluce-González, M. Montero, A. Retolaza and A.M. Uranga, Discrete gauge symmetries from (closed string) tachyon condensation, JHEP11 (2013) 144 [arXiv:1305.6788] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano, D. Regalado and A.M. Uranga, Non-Abelian discrete gauge symmetries in 4d string models, JHEP09 (2012) 059 [arXiv:1206.2383] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP12 (1998) 025 [hep-th/9811048] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups in quiver gauge theories, Nucl. Phys.B 747 (2006) 436 [hep-th/0602094] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups from nonAbelian orbifold quiver gauge theories, Nucl. Phys.B 794 (2008) 324 [hep-th/0701028] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  29. [29]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  30. [30]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys.A 22 (2007) 2977 [arXiv:0706.1660] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys.21 (2017) 1787 [arXiv:1610.01533] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, arXiv:1906.05225 [INSPIRE].
  34. [34]
    L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U (1)’s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys.B 542 (1999) 112 [hep-th/9808139] [INSPIRE].
  35. [35]
    M. Bertolini, F. Bigazzi and A.L. Cotrone, New checks and subtleties for AdS/CFT and a-maximization, JHEP12 (2004) 024 [hep-th/0411249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP06 (2005) 064 [hep-th/0411264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional N = 1 supersymmetric gauge theory, Nucl. Phys.B 447 (1995) 95 [hep-th/9503121] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    Y. Imamura, H. Isono, K. Kimura and M. Yamazaki, Exactly marginal deformations of quiver gauge theories as seen from brane tilings, Prog. Theor. Phys.117 (2007) 923 [hep-th/0702049] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    M. Schmaltz, Duality of nonsupersymmetric large N gauge theories, Phys. Rev.D 59 (1999) 105018 [hep-th/9805218] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    A.M. Uranga, Brane configurations for branes at conifolds, JHEP01 (1999) 022 [hep-th/9811004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Central extensions of finite Heisenberg groups in cascading quiver gauge theories, Nucl. Phys.B 749 (2006) 245 [hep-th/0603114] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    B.A. Burrington, J.T. Liu, M. Mahato and L.A. Pando Zayas, Finite Heisenbeg groups and Seiberg dualities in quiver gauge theories, Nucl. Phys.B 757 (2006) 1 [hep-th/0604092] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  43. [43]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP11 (2000) 027 [hep-th/0010206] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    D. Forcella, A. Hanany and A. Zaffaroni, Baryonic Generating Functions, JHEP12 (2007) 022 [hep-th/0701236] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP11 (2007) 092 [arXiv:0705.2771] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of N = 1 Gauge Theories, JHEP08 (2008) 012 [arXiv:0801.1585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, Mastering the Master Space, Lett. Math. Phys.85 (2008) 163 [arXiv:0801.3477] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    S. Franco, E. García-Valdecasas and A.M. Uranga, Bipartite field theories and D-brane instantons, JHEP11 (2018) 098 [arXiv:1805.00011] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    D. Forcella, I. García-Etxebarria and A. Uranga, E3-brane instantons and baryonic operators for D3-branes on toric singularities, JHEP03 (2009) 041 [arXiv:0806.2291] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Física Teórica IFT-UAM/CSICMadridSpain

Personalised recommendations