Advertisement

Quasinormal modes of supersymmetric microstate geometries from the D1-D5 CFT

  • Bidisha Chakrabarty
  • Debodirna Ghosh
  • Amitabh VirmaniEmail author
Open Access
Regular Article - Theoretical Physics
  • 37 Downloads

Abstract

We revisit the study of the probe scalar quasinormal modes of a class of three- charge super- symmetric microstate geometries. We compute the real and imaginary parts of the quasinormal modes and show that in the parameter range when the geometries have large AdS region, the spectrum is precisely reproduced from a D1-D5 orbifold CFT analysis. The spectrum includes the slow decaying modes pointed out by Eperon, Reall, and Santos. We analyse in detail the nature of the quasinormal modes by studying the scalar wavefunction. We show that these modes correspond to slow leakage of excitation from AdS throat to infinity.

Keywords

AdS-CFT Correspondence Black Holes Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys.B 623 (2002) 342 [hep-th/0109154] [INSPIRE].
  2. [2]
    S.D. Mathur, The Fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lecture Notes in Physics volume 755, Springer, Germany (2008) [hep-th/0701216].Google Scholar
  4. [4]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept.467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    I. Bena and N.P. Warner, Resolving the structure of black holes: philosophizing with a hammer, arXiv:1311.4538 [INSPIRE].
  6. [6]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys.B 701 (2004) 357 [hep-th/0405017] [INSPIRE].
  7. [7]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys.B 710 (2005) 425 [hep-th/0406103] [INSPIRE].
  8. [8]
    S. Giusto and S.D. Mathur, Geometry of D1-D5-P bound states, Nucl. Phys.B 729 (2005) 203 [hep-th/0409067] [INSPIRE].
  9. [9]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys.B 680 (2004) 415 [hep-th/0311092] [INSPIRE].
  10. [10]
    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP05 (2012) 014 [arXiv:1112.6413] [INSPIRE].
  11. [11]
    S.D. Mathur and D. Turton, Momentum-carrying waves on D1-D5 microstate geometries, Nucl. Phys.B 862 (2012) 764 [arXiv:1202.6421].
  12. [12]
    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys.B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys.B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE].
  14. [14]
    S. Chakrabarti, D. Mishra, Y.K. Srivastava and A. Virmani, Generalised Garfinkle–Vachaspati transform with dilaton, Class. Quant. Grav.36 (2019) 125008 [arXiv:1901.09048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Mishra, Y.K. Srivastava and A. Virmani, A generalised Garfinkle–Vachaspati transform, Gen. Rel. Grav.50 (2018) 155 [arXiv:1808.04981] [INSPIRE].
  16. [16]
    V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev.D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].
  17. [17]
    V. Cardoso, O.J.C. Dias, J.L. Hovdebo and R.C. Myers, Instability of non-supersymmetric smooth geometries, Phys. Rev.D 73 (2006) 064031 [hep-th/0512277] [INSPIRE].
  18. [18]
    B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav.25 (2008) 135005 [arXiv:0711.4817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Katsimpouri, A. Kleinschmidt and A. Virmani, An inverse scattering construction of the JMaRT fuzzball, JHEP12 (2014) 070 [arXiv:1409.6471].ADSCrossRefGoogle Scholar
  20. [20]
    B. Chakrabarty, J.V. Rocha and A. Virmani, Smooth non-extremal D1-D5-P solutions as charged gravitational instantons, JHEP08 (2016) 027 [arXiv:1603.06799] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. Chakrabarty, D. Turton and A. Virmani, Holographic description of non-supersymmetric orbifolded D1-D5-P solutions, JHEP11 (2015) 063 [arXiv:1508.01231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    F.C. Eperon, H.S. Reall and J.E. Santos, Instability of supersymmetric microstate geometries, JHEP10 (2016) 031 [arXiv:1607.06828] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    F.C. Eperon, Geodesics in supersymmetric microstate geometries, Class. Quant. Grav.34 (2017) 165003 [arXiv:1702.03975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Keir, Wave propagation on microstate geometries, arXiv:1609.01733 [INSPIRE].
  25. [25]
    J. Keir, Evanescent ergosurface instability, arXiv:1810.03026 [INSPIRE].
  26. [26]
    D. Marolf, B. Michel and A. Puhm, A rough end for smooth microstate geometries, JHEP05 (2017) 021 [arXiv:1612.05235] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early scrambling and capped BTZ geometries, JHEP04 (2019) 126 [arXiv:1812.05110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, JHEP01 (2014) 034 [arXiv:1208.2005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    B. Guo, S. Hampton and S.D. Mathur, Can we observe fuzzballs or firewalls?, JHEP07 (2018) 162 [arXiv:1711.01617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP02 (2013) 050 [arXiv:1211.0306] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Lunin and S.D. Mathur, The Slowly rotating near extremal D1-D5 system as a ‘hot tube’, Nucl. Phys.B 615 (2001) 285 [hep-th/0107113] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Cvetič and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev.D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].
  34. [34]
    J.B. Gutowski, D. Martelli and H.S. Reall, All supersymmetric solutions of minimal supergravity in six- imensions, Class. Quant. Grav.20 (2003) 5049 [hep-th/0306235] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav.31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].
  36. [36]
    V. Cardoso, O.J.C. Dias and R.C. Myers, On the gravitational stability of D1-D5-P black holes, Phys. Rev.D 76 (2007) 105015 [arXiv:0707.3406] [INSPIRE].
  37. [37]
    V. Ferrari and B. Mashhoon, New approach to the quasinormal modes of a black hole, Phys. Rev.D 30 (1984) 295 [INSPIRE].
  38. [38]
    V. Cardoso et al., Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev.D 79 (2009) 064016 [arXiv:0812.1806] [INSPIRE].
  39. [39]
    H. Yang et al., Quasinormal-mode spectrum of Kerr black holes and its geometric interpretation, Phys. Rev.D 86 (2012) 104006 [arXiv:1207.4253] [INSPIRE].
  40. [40]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Emission from the D1D5 CFT, JHEP10 (2009) 065 [arXiv:0906.2015] [INSPIRE].
  41. [41]
    B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav.25 (2008) 225021 [arXiv:0806.2309] [INSPIRE].
  42. [42]
    B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav.26 (2009) 035006 [arXiv:0810.2951] [INSPIRE].
  43. [43]
    B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 System, arXiv:1001.1444 [INSPIRE].
  44. [44]
    S.G. Avery, Using the D1-D5 CFT to understand black holes, arXiv:1012.0072 [INSPIRE].
  45. [45]
    O. Lunin and S.D. Mathur, Correlation functions for M N/S(N) orbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].
  46. [46]
    J.V. Rocha, Evaporation of large black holes in AdS: coupling to the evaporon, JHEP08 (2008) 075 [arXiv:0804.0055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S.G. Avery and B.D. Chowdhury, Emission from the D1-D5 CFT: higher twists, JHEP01 (2010) 087 [arXiv:0907.1663] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, 7th edition, Elsevier/Academic Press, Amsterdam The Netherlands (2007).Google Scholar
  50. [50]
    V. Paschalidis and N. Stergioulas, Rotating stars in relativity, Living Rev. Rel.20 (2017) 7 [arXiv:1612.03050] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    M. Bianchi, D. Consoli and J.F. Morales, Probing fuzzballs with particles, waves and strings, JHEP06 (2018) 157 [arXiv:1711.10287] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M. Bianchi, D. Consoli, A. Grillo and J.F. Morales, The dark side of fuzzball geometries, JHEP05 (2019) 126 [arXiv:1811.02397] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    M. Bianchi, M. Casolino and G. Rizzo, Accelerating strangelets via Penrose process in non-BPS fuzzballs, arXiv:1904.01097 [INSPIRE].
  54. [54]
    A. Ravishankar, The Aretakis instability of extremal asymptotically AdS black holes, talk given at Chennai Mathematical Institute, July 17, Chennai, India (2019).Google Scholar
  55. [55]
    I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal decay without information loss in horizonless microstate geometries, arXiv:1905.05194 [INSPIRE].
  56. [56]
    O. Lunin and S.D. Mathur, A toy black hole S-matrix in the D1-D5 CFT, JHEP02 (2013) 083 [arXiv:1211.5830] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.International Centre for Theoretical Sciences (ICTS)BengaluruIndia
  2. 2.Chennai Mathematical InstituteTamil NaduIndia

Personalised recommendations