Towards the underlying gauge theory of the pure spinor superstring

  • Renann Lipinski JusinskasEmail author
Open Access
Regular Article - Theoretical Physics


Previous attempts to determine the worldsheet origin of the pure spinor for­malism were not completely successful, but introduced important concepts that seem to be connected to its fundamental structure, e.g., emergent supersymmetry and the role of reparametrization symmetry. In this work, a new proposal towards the underlying gauge theory of the pure spinor superstring is presented, based on an extension of Berkovits’ twistor-like constraint. The gauge algebra is analyzed in detail and worldsheet reparametrization is shown to be a redundant symmetry. The master action is built with a careful account of the intrinsic gauge symmetries associated with the pure spinor constraint and a consistent gauge fixing is performed. After a field redefinition, spacetime supersymmetry emerges and the resulting action describes the pure spinor superstring.


Superstrings and Heterotic Strings ERST Quantization Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    N. Berkovits, Super Poincare covariant quantization of the superstring, JHEP04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Gomez and C.R. Mafra, The closed-string S-loop amplitude and S-duality, JHEP10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part I. Pure spinors and superfield kinematics, JHEP08 (2019) 090 [arXiv:1812.10969] [INSPIRE].
  4. [4]
    C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part II. Worldsheet functions and their duality to kinematics, JHEP08 (2019) 091 [arXiv:1812.10970] [INSPIRE].
  5. [5]
    C.R. Mafra and 0. Schlotterer, Towards the n-point one-loop superstring amplitude. Part III. One-loop correlators and their double-copy structure, JHEP08 (2019) 092 [arXiv:1812.10971] [INSPIRE].
  6. [6]
    L. Mazzucato, Superstrings in AdS, Phys. Rept.521 (2012) 1 [arXiv:1104.2604] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Berkovits and E. Witten, Supersymmetry Breaking Effects using the Pure Spinor Formalism of the Super string, JHEP06 (2014) 127 [arXiv:1404.5346] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Ramond, Dual Theory for Free Fermions, Phys. Rev.D 3 (1971) 2415 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys.B 31 (1971) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.B. Green and J.H. Schwarz, Supersymmetrical Dual String Theory, Nucl. Phys.B 181 (1981) 502 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.B. Green and J.H. Schwarz, Supersymmetrical String Theories, Phys. Lett.109B (1982) 444 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms, Phys. Rev. Lett.96 (2006) 011602 [hep-th/0509234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Berkovits, Cohomology in the pure spinor formalism for the superstring, JHEP09 (2000) 046 [hep-th/0006003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    N. Berkovits and D.Z. Marchioro, Relating the Green-Schwarz and pure spinor formalisms for the superstring, JHEP01 (2005) 018 [hep-th/0412198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Berkovits and R. Lipinski Jusinskas, Light-Cone Analysis of the Pure Spinor Formalism for the Superstring, JHEP08 (2014) 102 [arXiv:1406.2290] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R.L. Jusinskas, Spectrum generating algebra for the pure spinor superstring, JHEP10 (2014) 022 [arXiv:1406.1902] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D.P. Sorokin, Superbranes and superembeddings, Phys. Rept.329 (2000) 1 [hep-th/9906142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Berkovits, A Covariant Action for the Heterotic Superstring With Manifest Space-time Supersymmetry and World Sheet Superconformal Invariance, Phys. Lett.B 232 (1989) 184 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Tonin, World sheet supersymmetric formulations of Green-Schwarz superstrings, Phys. Lett.B 266 (1991) 312 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Matone, L. Mazzucato, I. Oda, D. Sorokin and M. Tonin, The Superembedding origin of the Berkovits pure spinor covariant quanti zation of superstrings, Nucl. Phys.B 639 (2002) 182 [hep-th/0206104] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Berkovits, Pure spinors, twistors and emergent supersymmetry, JHEP12 (2012) 006 [arXiv:1105.1147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Berkovits, Twistor Origin of the Superstring, JHEP 03 (2015) 122 [arXiv:1409.2510] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Berkovits, Origin of the Pure Spinor and Green-Schwar z Formalisms, JHEP07 (2015) 091 [arXiv:1503.03080] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R.L. Jusinskas, Quantization of the particle with a linear massless solution, arXiv:1808.07463 [INSPIRE].
  25. [25]
    N. Berkovits, Untwisting the pure spinor formalism to the RNS and twistor string in a fiat and AdS 5 x S 5background, JHEP06 (2016) 127 [arXiv:1604.04617] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP08 (2001) 026 [hep-th/0104247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    I. Oda and M. Tonin, Y-formalism in pure spinor quantization of superstrings, Nucl. Phys.B 727 (2005) 176 [hep-th/0505277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Hoogeveen and K. Skenderis, ERST quantization of the pure spinor superstring, JHEP11 (2007) 081 [arXiv:0710.2598] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R.L. Jusinskas, Notes on the ambitwistor pure spinor string, JHEP05 (2016) 116 [arXiv:1604.02915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    T. Azevedo and R.L. Jusinskas, Connecting the ambitwistor and the sectorized heterotic strings, JHEP10 (2017) 216 [arXiv:1707.08840] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of Physics of the Czech Academy of SciencesCEICO - Central European Institute for Cosmology and FUndamental PhysicsPragueCzech Republic

Personalised recommendations