Advertisement

Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes

  • Alejandro Cabo-BizetEmail author
  • Davide Cassani
  • Dario Martelli
  • Sameer Murthy
Open Access
Regular Article - Theoretical Physics

ABSTRACT

We present a holographic derivation of the entropy of supersymmetric asymp­totically AdS5 black holes. We define a BPS limit of black hole thermodynamics by first focussing on a supersymmetric family of complexified solutions and then reaching extremality. We show that in this limit the black hole entropy is the Legendre transform of the on-shell gravitational action with respect to three chemical potentials subject toa con­straint. This constraint follows from supersymmetry and regularity in the Euclidean bulk geometry. Further, we calculate, using localization, the exact partition function of the dual \( \mathcal{N} \) = 1 SCFT on a twisted S1 × S3 with complexified chemical potentials obeying this constraint. This defines a generalization of the supersymmetric Casimir energy, whose Legendre transform at large N exactly reproduces the Bekenstein-Hawking entropy of the black hole.

KEYWORDS

AdS-CFT Correspondence Black Holes in String Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett.A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4from supersymmetric localization, JHEP05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5black holes, JHEP02 (2004) 006 [hep-th/0401042] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5black holes, JHEP04 (2004) 048 [hep-th/0401129] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z.W. Chong, M. Cvetic, H. Lu and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett.95 (2005) 161301 [hep-th/0506029] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  8. [8]
    Z.W. Chong, M. Cvetic, H. Lu and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev.D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS 5black holes, JHEP04 (2006) 036 [hep-th/0601156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Ph ys.275 (2007) 209 [hep-th /0510251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    C. Romelsberger, Counting chiral primaries in N= 1, d = 4 superconformal field theories, Nucl. Phys.B 747 (2006) 329 [hep-th /0510060] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    R.A. Janik and M. Trzetrzelewski, Supergravitons from one loop perturbative N = 4 SYM, Phys. Rev.D 77 (2008) 085024 [arXiv:0712.2714] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. Grant , P.A. Grassi, S. Kim and S. Minwalla, Comments on 1/16 BPS Quantum States and Classical Configurations, JHEP 05 (2008) 049 [arXiv: 0803. 4183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C.-M. Chang and X. Yin, 1/16 BPS states in N = 4 super-Yang-Mills theory, Phys. Rev.D 88 (2013) 106005 [arXiv:1305 .6314] [INSPIRE].ADSGoogle Scholar
  15. [15]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys.117 (1988) 353 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.7 (2003) 831 [hep-th /0206161] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv: 0712.2824] [INSPIRE].
  18. [18]
    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP08 (2014) 123 [arXiv: 1405.5144] INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Assel, D. Cassani, L. DiPietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir Energy in Curved Space and its Supersymmetric Counterpart, JHEP07 (2015) 043 [arXiv: 1503.05537] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    A. Sen, Entropy Function and AdS 2/CFT 1Correspondence, JHEP11 (2008) 075 [arXiv: 0805.0095] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.J. Silva, Thermodynamics at the BPS bound for Black Holes in AdS, JHEP10 (2006) 022 [hep-th/0607056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS 5, JHEP07 (2017) 106 [arXiv:1705. 05383] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS 4, Phys. Lett.B 771 (2017) 462 [arXiv: 1608. 07294] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  25. [25]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP02 (2018) 054 [arXiv: 1707.04257] [ INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    N. Halmagyi and S. Lal, On the on-shell: the action of AdS 4black holes, JHEP03 (2018) 146 [arXiv:1710.09580] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [arXiv: 1712.01849] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv: 1810.12067 [INSPIRE].
  29. [29]
    M. Honda, Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula, Phys. Rev.D 100 (2019) 026008 [arXiv:1901.08091] [IINSPIRE].ADSGoogle Scholar
  30. [30]
    A. Arabi Ardehali, Cardy-like asymptotics of the 4d \( \mathcal{N} \) = 4 index and AdS 5blackholes, JHEP06 (2019) 134 [arXiv:1902.06619] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Comments on deconfinement in AdS/CFT, arXiv: 1811.08646 [INSPIRE].
  32. [32]
    F. Benini and P. Milan, Black holes in 4d \( \mathcal{N} \) = 4 Super-Yang-Mills, arXiv:1812.09613 [INSPIRE].
  33. [33]
    A. Buchel and J.T. Liu, Gauged supergravity from type JIB string theory on Y**p,q manifolds, Nucl. Phys.B 771 (2007) 93 [hep-th/0608002], [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    J.P. Gauntlett and O. Varela, Consistent Kaluza- Klein reductions for general supersymmetric AdS solutions, Phys. Rev.D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    W. Chen, H. Lu and C.N. Pope, Mass of rotating black holes in gauged supergravities, Phys. Rev.D 73 (2006) 104036 [hep-th/0510081] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  37. [37]
    H.K. Kunduri and J. Lucietti, Notes on non-extremal, charged, rotating black holes in minimal D = 5 gauged supergravity, Nucl. Phys.B 724 (2005) 343 [hep-th/0504158] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J. Choi, S. Lee and S. Lee, Near Horizon Analysis of Extremal AdS5 Bla ck Holes, JHEP 05 (2008) 002 [arXiv:0802.3330] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Kim and K.-M. Lee, 1/ 16-BPS Black Holes and Giant Gravitons in the AdS 5 x S5Space, JHEP 12 (2006) 077 [hep-th/0607085] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    M. Cvetic, H. Lu and C.N. Pope, Charged Kerr-de Sitter black holes in five dimensions, Phys. Lett.B 598 (2004) 273 [hep-th/0406196] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev.D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in Lorent zian Curved Spaces and Holography, Commun. Math. Phys.327 (2014) 577 [arXiv: 1207.2181] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    M.F. Sohnius and P.C. West, An Alternative Minimal Off-Shell Version of N = 1 Supergravity, Phys. Lett.105B (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Sohnius and P.C. West, The Tensor Calculus and Matter Coupli ng of the Alt ernative Minimal Auxiliary Field Formulation of N = 1 Supergravity, Nucl. Phys.B 198 (1982) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring Curved Superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP07 (2017) 038 [arXiv: 1703.04299] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    O.S. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic renormalization, JHEP 12 (2017) 107 [arXiv:1703.09607] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, The holographic supersymmetric Casimir energy, Phys. Rev.D 95 (2017) 021902 [arXiv:1606.02724] [INSPIRE].ADSzbMATHGoogle Scholar
  52. [52]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP02 (2017) 132 [arXiv: 1612.06761] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    S. Nawata, Localization of N = 4 Superconformal Field Theory on S 1 × S 3and Index, JHEP11 (2011) 144 [arXiv:1104.4470] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    F. Benini, T. Nishioka and M. Yamazaki, 4d Index to 3d Index and 2d TQFT, Phys. Rev.D 86 (2012) 065015 [arXiv:1109.0283] [INSPIRE].ADSGoogle Scholar
  55. [55]
    C. Closset and I. Shamir, The \( \mathcal{N} \)= 1 Chiral Multiplet on T 2 × S 2and Supersymmetric Localization, JHEP03 (2014) 040 [arXiv: 1311.2430] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys.B 821 (2009) 241 [Erratum ibid.B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  57. [57]
    K. Hosomichi, A Review on SUSY Gauge Theories onS 3 , in New Dualities of Supersymmetric Gauge Theories, J. Teschner eds., Springer, Berlin Germany (2016), pg. 307 [arXiv: 1412. 7128] [INSPIRE].
  58. [58]
    G. Felder and A. Varchenko, The elliptic gamma function and SL(3, Z) ⋉ Z3, math/9907061.
  59. [59]
    A. Arabi Ardehali, J.T. Liu and P. Szepietowski, High-Temperature Expansion of Supersymmetric Partition Functions, JHEP 07 (2015) 113 [arXiv:1502.07737] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP12 (2014) 031 [arXiv:1407.6061] [INSPIRE].zbMATHCrossRefGoogle Scholar
  61. [61]
    D. Martelli and J. Sparks, The character of the supersymmetric Casimir energy, JHEP08 (2016) 117 [arXiv:1512.02521] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    F.A. Dolan and H. Osborn, Applications of the Superconformal Inde x for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys.B 818 (2009) 137 [arXiv: 0801.4947] [INSPIRE].
  63. [63]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys.8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys.B 573 (2000) 349 [hep-th/9908001] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys.280 (2008) 611 [hep-th/0603021] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP05 (2013) 144 [arXiv: 1206.6339] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    N. Bobev, M. Bullimore and H.-C. Kim, Supersymmetric Casimir Energy and the Anomaly Polynomial, JHEP09 (2015) 142 [arXiv:1507.08553] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  69. [69]
    A. Sen, Black Hol e Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav.40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  70. [70]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP06 (2011) 019 [arXiv:1012.0265] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    A. Dabholkar, J. Gomes and S. Murthy, Locali zation & Exact Holography, JHEP04 (2013) 062 [arXiv:1111.1161] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  72. [72]
    A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock Modular Forms, arXiv: 1208.4074 [INSPIRE].
  73. [73]
    V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals and 't Hooft anomaly matching conditions, JHEP06 (2012) 016 [arXiv:1203.5677] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    E. Shaghoulian, Modular Invariance of Conformal Field Theory on S1S 3and Circle Fibrations, Phys. Rev. Lett.119 (2017) 131601 [arXiv: 1612.05257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes, JHEP10 (2006) 074 [hep-th/0608044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    O.J.C. Dias and P.J. Silva, Euclidean analysis of the entropy functional formalism, Phys. Rev.D 77 (2008) 084011 [arXiv:0704.1405] [INSPIRE].ADSGoogle Scholar
  78. [78]
    N.V. Suryanarayana and M.C. Wapler, Charges from Attractors, Class. Quant. Grav.24 (2007) 5047 [arXiv:0704.0955] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. [79]
    S.M. Hosseini and A. Zaffaroni, Large N matrix models for 3d \( \mathcal{N} \) = 2 theories: twisted index, free energy and black holes, JHEP08 (2016) 064 [arXiv: 1604.03122] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  80. [80]
    J. Lorenzen and D. Martelli, Comments on the Casimir energy in supersymmetric field theories, JHEP07 (2015) 001 [arXiv:1412.7463] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    J.L. Blazquez-Salcedo, J. Kunz, F. Navarro-Lerida and E. Radu, Squashed, magnetized black holes in D = 5 minimal gauged supergravity, JHEP02 (2018) 061 [arXiv:1711.10483] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    D. Cassani and L. Papini, Squashing the boundary of supersymmetric AdS 5black holes, JHEP12 (2018) 037 [arXiv:1809.02149] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    J. Markeviciute and J.E. Santos, Evidence for the existence of a novel class of supersymmetric black holes with AdS 5 x S5asymptotics, Class. Quant. Grav.36 (2019) 02LT01 [arXiv:1806.01849] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    J. Markeviciute, Rotating Hairy Black Holes in AdS 5 x S5, JHEP03 (2019) 110 [arXiv: 1809.04084] INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    S.M. Hosseini, K. Hristov and A. Zaffaroni, A note on the entropy of rotating BPS AdS 7 X S 4black holes, JHEP 05 (2018) 121 [arXiv: 1803.07568] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  86. [86]
    J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev.D 68 (2003) 105009 [Erratum ibid.D 70 (2004) 089901] [hep-th/0304064] [INSPIRE].
  87. [87]
    D. Cassani, J. Lorenzen and D. Martelli, Comments on supersymmetric solutions of minimal gauged supergravity in five dimensions, Class. Quant. Grav.33 (2016) 115013 [arXiv: 1510.01380] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    T. Ortfn, A Note on Lie-Lorentz derivatives, Class. Quant. Grav.19 (2002) L143 [hep-th/0206159] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    V.P. Spiridonov, Elliptic beta integrals and solvable models of statistical mechanics, Contemp. Math.563 (2012) 181 [arXiv: 1011.3798] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    E. Friedman and S. Ruijsenaars, Shintani-barnes zeta and gamma functions, Adv. Math.187 (2004) 362.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Alejandro Cabo-Bizet
    • 1
    Email author
  • Davide Cassani
    • 2
  • Dario Martelli
    • 1
  • Sameer Murthy
    • 1
  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.INPN, Sezione di PadovaPadovaItaly

Personalised recommendations