Advertisement

Dark matter in the Randall-Sundrum model with non-universal coupling

  • Ashok Goyal
  • Rashidul Islam
  • Mukesh KumarEmail author
Open Access
Regular Article - Theoretical Physics
  • 29 Downloads

Abstract

We consider simplified dark matter models (DM) interacting gravitationally with the standard model (SM) particles in a Randall-Sundrum (RS) framework. In this framework, the DM particles interact through the exchange of spin-2 Kaluza-Klein (KK) gravitons in the s-channel with the SM particles. The parameter space of the RS model with universal couplings to SM particles is known to be strongly constrained from the LHC data. We are thus led to consider models with non-universal couplings. The first model we consider in this study is a top-philic graviton model in which only the right-handed top quarks are taken to interact strongly with the gravitons. In the second, the lepto-philic model, we assume that only the right-handed charged leptons interact strongly with the gravitons. We extend the study to include not only the scalar, vector and spin-1/2 fermions but also spin-3/2 fermionic dark matter. We find that there is a large parameter space in these benchmark models where it is possible to achieve the observed relic density consistent with the direct and indirect searches and yet not to be constrained from the LHC data.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  2. [2]
    DarkSide collaboration, Results From the First Use of Low Radioactivity Argon in a Dark Matter Search, Phys. Rev.D 93 (2016) 081101 [arXiv:1510.00702] [INSPIRE].
  3. [3]
    LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  4. [4]
    XENON collaboration, First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett.119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  5. [5]
    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  6. [6]
    Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J.834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  7. [7]
    Fermi-LAT collaboration, Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev.D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  8. [8]
    H.E.S.S. collaboration, Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S., Phys. Rev. Lett.110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].
  9. [9]
    M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal bremsstrahlung signatures in light of direct dark matter searches, JCAP12 (2013) 046 [arXiv:1306.6342] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Light Majorana dark Matter from Colliders, Phys. Lett.B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].
  11. [11]
    GAMBIT collaboration, Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J.C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].
  12. [12]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  13. [13]
    S. Kraml, U. Laa, K. Mawatari and K. Yamashita, Simplified dark matter models with a spin-2 mediator at the LHC, Eur. Phys. J. C 77 (2017) 326 [arXiv:1701.07008] [INSPIRE].
  14. [14]
    W.D. Goldberger and M.B. Wise, Bulk fields in the Randall-Sundrum compactification scenario, Phys. Rev.D 60 (1999) 107505 [hep-ph/9907218] [INSPIRE].
  15. [15]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett.B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].
  16. [16]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett.B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].
  17. [17]
    S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev.D 62 (2000) 084025 [hep-ph/9912498] [INSPIRE].
  18. [18]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: On and off the wall, Phys. Rev.D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE].
  19. [19]
    C.-Q. Geng, D. Huang and K. Yamashita, LHC Searches for Top-philic Kaluza-Klein Graviton, JHEP10 (2018) 046 [arXiv:1807.09643] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett.B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].
  21. [21]
    H.M. Lee, M. Park and V. Sanz, Gravity-mediated (or Composite) Dark Matter, Eur. Phys. J.C 74 (2014) 2715 [arXiv:1306.4107] [INSPIRE].
  22. [22]
    H.M. Lee, M. Park and V. Sanz, Gravity-mediated (or Composite) Dark Matter Confronts Astrophysical Data, JHEP05 (2014) 063 [arXiv:1401.5301] [INSPIRE].
  23. [23]
    T.D. Rueter, T.G. Rizzo and J.L. Hewett, Gravity-Mediated Dark Matter Annihilation in the Randall-Sundrum Model, JHEP10 (2017) 094 [arXiv:1706.07540] [INSPIRE].
  24. [24]
    C.-Q. Geng and D. Huang, Note on spin-2 particle interpretation of the 750 GeV diphoton excess, Phys. Rev.D 93 (2016) 115032 [arXiv:1601.07385] [INSPIRE].
  25. [25]
    M.O. Khojali, A. Goyal, M. Kumar and A.S. Cornell, Minimal Spin-3/2 Dark Matter in a simple s-channel model, Eur. Phys. J.C 77 (2017) 25 [arXiv:1608.08958] [INSPIRE].
  26. [26]
    M.O. Khojali, A. Goyal, M. Kumar and A.S. Cornell, Spin-3/2 Dark Matter in a simple t-channel model, Eur. Phys. J.C 78 (2018) 920 [arXiv:1705.05149] [INSPIRE].
  27. [27]
    P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP03 (2002) 051 [hep-th/0107141] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion stabilization, Phys. Rev.D 62 (2000) 045015 [hep-ph/9911406] [INSPIRE].
  29. [29]
    A. Semenov, LanHEP — A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun.201 (2016) 167 [arXiv:1412.5016] [INSPIRE].
  30. [30]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun.184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  31. [31]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the 𝜋N scattering amplitude and the pion-nucleon sigma term, Phys. Rev.D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].
  32. [32]
    J. Hisano, R. Nagai and N. Nagata, Effective Theories for Dark Matter Nucleon Scattering, JHEP05 (2015) 037 [arXiv:1502.02244] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J. Kopp, L. Michaels and J. Smirnov, Loopy Constraints on Leptophilic Dark Matter and Internal Bremsstrahlung, JCAP04 (2014) 022 [arXiv:1401.6457] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev.D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].
  35. [35]
    F. D’Eramo, B.J. Kavanagh and P. Panci, Probing Leptophilic Dark Sectors with Hadronic Processes, Phys. Lett.B 771 (2017) 339 [arXiv:1702.00016] [INSPIRE].
  36. [36]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  37. [37]
    XENON collaboration, The XENON1T Dark Matter Experiment, Eur. Phys. J.C 77 (2017) 881 [arXiv:1708.07051] [INSPIRE].
  38. [38]
    H.E.S.S. collaboration, H.E.S.S. Limits on Linelike Dark Matter Signatures in the 100 GeV to 2TeV Energy Range Close to the Galactic Center, Phys. Rev. Lett.117 (2016) 151302 [arXiv:1609.08091] [INSPIRE].
  39. [39]
    Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett.115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  40. [40]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s} \)= 13TeV, JHEP04 (2019) 031 [arXiv:1810.05905] [INSPIRE].
  41. [41]
    R. Bonciani, T. Jezo, M. Klasen, F. Lyonnet and I. Schienbein, Electroweak top-quark pair production at the LHC with Z′ bosons to NLO QCD in POWHEG, JHEP02 (2016) 141 [arXiv:1511.08185] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and Institute for Collider Particle PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of Physics and AstrophysicsUniversity of DelhiNew DelhiIndia
  3. 3.Department of PhysicsIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations