Two-parameter integrable deformations of the AdS3× S3× T4 superstring

  • Fiona K. SeiboldEmail author
Open Access
Regular Article - Theoretical Physics


For supercosets with isometry group of the form \( \hat{\mathrm{G}} \)×\( \hat{\mathrm{G}} \), the η-deformation can be generalised to a two-parameter integrable deformation with independent q-deformations of the two copies. We study its kappa-symmetry and write down a formula for the Ramond- Ramond fluxes. We then focus on \( \hat{\mathrm{G}} \) = PSU(1, 1|2) and construct two supergravity back- grounds for the two-parameter integrable deformation of the AdS3× S3× T4 superstring, as well as explore their limits. We also construct backgrounds that are solutions of the weaker generalised supergravity equations of motion and compare them to the literature.


Integrable Field Theories Sigma Models Superstrings and Heterotic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. Babichenko, B. Stefański Jr. and K. Zarembo, Integrability and the AdS 3/C F T2 correspondence, JHEP03 (2010) 058 [arXiv:0912.1723] [INSPIRE].
  4. [4]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3/C F T 2Correspondence and Integrability, JHEP11 (2012) 133 [Erratum JHEP04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  5. [5]
    O. Ohlsson Sax and B. Stefański Jr., Integrability, spin-chains and the AdS 3/C F T2 correspondence, JHEP08 (2011) 029 [arXiv:1106.2558] [INSPIRE].
  6. [6]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3× S 3× S 3× S 1superstring, JHEP10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic su(1|1)2S-matrix for AdS 3/C F T 2, JHEP04 (2013) 113 [arXiv:1211.5119] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  8. [8]
    B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS 3× S 3× T 4with mixed flux, Nucl. Phys.B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  9. [9]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, The complete AdS 3× S 3× T 4worldsheet S matrix, JHEP10 (2014) 066 [arXiv:1406.0453] [INSPIRE].
  10. [10]
    R. Hernández and J.M. Nieto, Spinning strings in AdS 3× S 3with NS-NS flux, Nucl. Phys.B 888 (2014) 236 [Corrigendum ibid.B 895 (2015) 303] [arXiv:1407.7475] [INSPIRE].
  11. [11]
    M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string spectrum in AdS 3/CFT 2from worldsheet integrability, JHEP04 (2017) 091 [arXiv:1701.03501] [INSPIRE].
  12. [12]
    A. Sfondrini, Towards integrability for AdS 3/C F T 2, J. Phys.A 48 (2015) 023001 [arXiv:1406.2971] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3and SL(2, ℝ) WZW model. I: The Spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  14. [14]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3and the SL(2, ℝ) WZW model. II: Euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE].
  15. [15]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3and the SL(2, ℝ) WZW model. III. Correlation functions, Phys. Rev.D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
  16. [16]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5× S 5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5× S 5superstring, JHEP10 (2014) 132 [arXiv:1406.6286] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
  20. [20]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys.50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].
  21. [21]
    F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl.32 (1985) 254 [INSPIRE].Google Scholar
  23. [23]
    M. Jimbo, A q difference analog of U (g) and the Yang-Baxter equation, Lett. Math. Phys.10 (1985) 63 [INSPIRE].
  24. [24]
    A.A. Belavin and V.G. Drinfel’d, Triangle equations and simple Lie algebras, Sov. Sci. Rev.C 4 (1984) 93.MathSciNetzbMATHGoogle Scholar
  25. [25]
    G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5× S 5, JHEP04 (2014) 002 [arXiv:1312.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Arutyunov, R. Borsato and S. Frolov, Puzzles of η-deformed AdS 5× S 5 , JHEP12 (2015) 049 [arXiv:1507.04239] [INSPIRE].ADSzbMATHGoogle Scholar
  27. [27]
    G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5× S 5superstring, T-duality and modified type-II equations, Nucl. Phys.B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  28. [28]
    A.A. Tseytlin and L. Wulff, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE].
  29. [29]
    J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance for generalized supergravity backgrounds from the doubled formalism, Prog. Theor. Exp. Phys.2017 (2017) 053B07 [arXiv:1703.09213] [INSPIRE].
  30. [30]
    J.J. Fernández-Melgarejo, J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Weyl Invariance of String Theories in Generalized Supergravity Backgrounds, Phys. Rev. Lett.122 (2019) 111602 [arXiv:1811.10600] [INSPIRE].
  31. [31]
    W. Mück, Generalized Supergravity Equations and Generalized Fradkin-Tseytlin Counterterm, JHEP05 (2019) 063 [arXiv:1904.06126] [INSPIRE].
  32. [32]
    R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP10 (2016) 045 [arXiv:1608.03570] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    B. Hoare and F.K. Seibold, Supergravity backgrounds of the η-deformed AdS 2× S 2× T 6and AdS 5× S 5superstrings, JHEP01 (2019) 125 [arXiv:1811.07841] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Arutyunov and S. Frolov, On String S-matrix, Bound States and TBA, JHEP12 (2007) 024 [arXiv:0710.1568] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    G. Arutyunov and S.J. van Tongeren, AdS 5× S 5mirror model as a string σ-model, Phys. Rev. Lett.113 (2014) 261605 [arXiv:1406.2304] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Arutyunov and S.J. van Tongeren, Double Wick rotating Green-Schwarz strings, JHEP05 (2015) 027 [arXiv:1412.5137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models, J. Phys.A 49 (2016) 415402 [arXiv:1606.01712] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  38. [38]
    N. Beisert and P. Koroteev, Quantum Deformations of the One-Dimensional Hubbard Model, J. Phys.A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality of the (AdS 5× S 5 )η superstring, Theor. Math. Phys.182 (2015) 23 [arXiv:1403.6104] [INSPIRE].
  40. [40]
    B. Hoare and A.A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS 5× S 5superstring theory, JHEP02 (2010) 094 [arXiv:0912.2958] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    N. Beisert, The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain, J. Phys.A 44 (2011) 265202 [arXiv:1002.1097] [INSPIRE].ADSzbMATHGoogle Scholar
  42. [42]
    B. Hoare and A.A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5× S 5superstring theory, Nucl. Phys.B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    B. Hoare, Towards a two-parameter q-deformation of AdS 3× S 3× M 4superstrings, Nucl. Phys.B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  44. [44]
    C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys.104 (2014) 1095 [arXiv:1402.2105] [INSPIRE].
  45. [45]
    O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of AdSn × S nsupercoset string models, Nucl. Phys.B 891 (2015) 106 [arXiv:1411.1066] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5× S 5superstring σ-model, Nucl. Phys.B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5× S 5Superstring. Part I, J. Phys.A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].
  48. [48]
    M.A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl.17 (1983) 259 [INSPIRE].zbMATHCrossRefGoogle Scholar
  49. [49]
    L. Wulff, Trivial solutions of generalized supergravity vs. non-abelian T-duality anomaly, Phys. Lett.B 781 (2018) 417 [arXiv:1803.07391] [INSPIRE].
  50. [50]
    R. Borsato and L. Wulff, Marginal deformations of WZW models and the classical Yang-Baxter equation, J. Phys.A 52 (2019) 225401 [arXiv:1812.07287] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav.19 (2002) L87 [hep-th/0201081] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    D. Roychowdhury, On pp wave limit for η deformed superstrings, JHEP05 (2018) 018 [arXiv:1801.07680] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdSn × S nsupercosets, JHEP06 (2014) 002 [arXiv:1403.5517] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdSn × S n , Int. J. Mod. Phys.A 23 (2008) 2107 [arXiv:0806.2623] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  56. [56]
    A. Pacho-l and S.J. van Tongeren, Quantum deformations of the flat space superstring, Phys. Rev.D 93 (2016) 026008 [arXiv:1510.02389] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of corrections to the spin-chain/string duality, Nucl. Phys.B 736 (2006) 288 [hep-th/0510171] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    T. Araujo, E.Ó. Colgáin and H. Yavartanoo, Embedding the modified CYBE in Supergravity, Eur. Phys. J.C 78 (2018) 854 [arXiv:1806.02602] [INSPIRE].
  59. [59]
    B. Hoare and S.J. van Tongeren, On Jordanian deformations of AdS 5and supergravity, J. Phys.A 49 (2016) 434006 [arXiv:1605.03554] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  60. [60]
    S.J. van Tongeren, Unimodular Jordanian deformations of integrable superstrings, Sci Post Phys.7 (2019) 011 [arXiv:1904.08892] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5× S 5superstring, JHEP04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D. Orlando, S. Reffert and L.I. Uruchurtu, Classical Integrability of the Squashed Three-sphere, Warped AdS 3and Schrödinger Spacetime via T-duality, J. Phys.A 44 (2011) 115401 [arXiv:1011.1771] [INSPIRE].ADSzbMATHGoogle Scholar
  63. [63]
    C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett.B 351 (1995) 455 [hep-th/9502122] [INSPIRE].
  64. [64]
    C. Klimčík, Poisson-Lie T duality, Nucl. Phys. Proc. Suppl.46 (1996) 116 [hep-th/9509095] [INSPIRE].
  65. [65]
    B. Hoare and A.A. Tseytlin, On integrable deformations of superstring σ-models related to AdSn × S nsupercosets, Nucl. Phys.B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  66. [66]
    T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the AdS 5× S 5Superstring, J. Phys.A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].zbMATHMathSciNetGoogle Scholar
  67. [67]
    K. Sfetsos and D.C. Thompson, Spacetimes for λ-deformations, JHEP12 (2014) 164 [arXiv:1410.1886] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    Y. Chervonyi and O. Lunin, Supergravity background of the λ-deformed AdS 3× S 3supercoset, Nucl. Phys.B 910 (2016) 685 [arXiv:1606.00394] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  69. [69]
    G. Georgiou and K. Sfetsos, The most general λ-deformation of CFTs and integrability, JHEP03 (2019) 094 [arXiv:1812.04033] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    F. Delduc, B. Hoare, T. Kameyama, S. Lacroix and M. Magro, Three-parameter integrable deformation of4permutation supercosets, JHEP01 (2019) 109 [arXiv:1811.00453] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  71. [71]
    M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3 , JHEP05 (2018) 085 [arXiv:1803.04423] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  72. [72]
    G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS 3at k = 1, JHEP08 (2018) 204 [arXiv:1803.04420] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  73. [73]
    L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric Product CFT, JHEP04 (2019) 103 [arXiv:1812.01007] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    L. Eberhardt and M.R. Gaberdiel, String theory on AdS 3and the symmetric orbifold of Liouville theory, arXiv:1903.00421 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikEidgenössische Technische Hochschule ZürichZürichSwitzerland

Personalised recommendations