Two-parameter integrable deformations of the AdS3× S3× T4 superstring
- 25 Downloads
Abstract
For supercosets with isometry group of the form \( \hat{\mathrm{G}} \)×\( \hat{\mathrm{G}} \), the η-deformation can be generalised to a two-parameter integrable deformation with independent q-deformations of the two copies. We study its kappa-symmetry and write down a formula for the Ramond- Ramond fluxes. We then focus on \( \hat{\mathrm{G}} \) = PSU(1, 1|2) and construct two supergravity back- grounds for the two-parameter integrable deformation of the AdS3× S3× T4 superstring, as well as explore their limits. We also construct backgrounds that are solutions of the weaker generalised supergravity equations of motion and compare them to the literature.
Keywords
Integrable Field Theories Sigma Models Superstrings and Heterotic StringsNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [INSPIRE].
- [2]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [3]A. Babichenko, B. Stefański Jr. and K. Zarembo, Integrability and the AdS 3/C F T2 correspondence, JHEP03 (2010) 058 [arXiv:0912.1723] [INSPIRE].
- [4]A. Cagnazzo and K. Zarembo, B-field in AdS 3/C F T 2Correspondence and Integrability, JHEP11 (2012) 133 [Erratum JHEP04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
- [5]O. Ohlsson Sax and B. Stefański Jr., Integrability, spin-chains and the AdS 3/C F T2 correspondence, JHEP08 (2011) 029 [arXiv:1106.2558] [INSPIRE].
- [6]P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3× S 3× S 3× S 1superstring, JHEP10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [7]R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic su(1|1)2S-matrix for AdS 3/C F T 2, JHEP04 (2013) 113 [arXiv:1211.5119] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [8]B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS 3× S 3× T 4with mixed flux, Nucl. Phys.B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [9]R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, The complete AdS 3× S 3× T 4worldsheet S matrix, JHEP10 (2014) 066 [arXiv:1406.0453] [INSPIRE].
- [10]R. Hernández and J.M. Nieto, Spinning strings in AdS 3× S 3with NS-NS flux, Nucl. Phys.B 888 (2014) 236 [Corrigendum ibid.B 895 (2015) 303] [arXiv:1407.7475] [INSPIRE].
- [11]M. Baggio, O. Ohlsson Sax, A. Sfondrini, B. Stefański and A. Torrielli, Protected string spectrum in AdS 3/CFT 2from worldsheet integrability, JHEP04 (2017) 091 [arXiv:1701.03501] [INSPIRE].
- [12]A. Sfondrini, Towards integrability for AdS 3/C F T 2, J. Phys.A 48 (2015) 023001 [arXiv:1406.2971] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [13]J.M. Maldacena and H. Ooguri, Strings in AdS 3and SL(2, ℝ) WZW model. I: The Spectrum, J. Math. Phys.42 (2001) 2929 [hep-th/0001053] [INSPIRE].
- [14]J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3and the SL(2, ℝ) WZW model. II: Euclidean black hole, J. Math. Phys.42 (2001) 2961 [hep-th/0005183] [INSPIRE].
- [15]J.M. Maldacena and H. Ooguri, Strings in AdS 3and the SL(2, ℝ) WZW model. III. Correlation functions, Phys. Rev.D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
- [16]J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [17]F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5× S 5superstring action, Phys. Rev. Lett.112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [18]F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5× S 5superstring, JHEP10 (2014) 132 [arXiv:1406.6286] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [19]C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP12 (2002) 051 [hep-th/0210095] [INSPIRE].
- [20]C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys.50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].
- [21]F. Delduc, M. Magro and B. Vicedo, On classical q-deformations of integrable σ-models, JHEP11 (2013) 192 [arXiv:1308.3581] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [22]V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl.32 (1985) 254 [INSPIRE].Google Scholar
- [23]
- [24]A.A. Belavin and V.G. Drinfel’d, Triangle equations and simple Lie algebras, Sov. Sci. Rev.C 4 (1984) 93.MathSciNetzbMATHGoogle Scholar
- [25]G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5× S 5, JHEP04 (2014) 002 [arXiv:1312.3542] [INSPIRE].ADSCrossRefGoogle Scholar
- [26]G. Arutyunov, R. Borsato and S. Frolov, Puzzles of η-deformed AdS 5× S 5 , JHEP12 (2015) 049 [arXiv:1507.04239] [INSPIRE].ADSzbMATHGoogle Scholar
- [27]G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5× S 5superstring, T-duality and modified type-II equations, Nucl. Phys.B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [28]A.A. Tseytlin and L. Wulff, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP06 (2016) 174 [arXiv:1605.04884] [INSPIRE].
- [29]J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance for generalized supergravity backgrounds from the doubled formalism, Prog. Theor. Exp. Phys.2017 (2017) 053B07 [arXiv:1703.09213] [INSPIRE].
- [30]J.J. Fernández-Melgarejo, J.-i. Sakamoto, Y. Sakatani and K. Yoshida, Weyl Invariance of String Theories in Generalized Supergravity Backgrounds, Phys. Rev. Lett.122 (2019) 111602 [arXiv:1811.10600] [INSPIRE].
- [31]W. Mück, Generalized Supergravity Equations and Generalized Fradkin-Tseytlin Counterterm, JHEP05 (2019) 063 [arXiv:1904.06126] [INSPIRE].
- [32]R. Borsato and L. Wulff, Target space supergeometry of η and λ-deformed strings, JHEP10 (2016) 045 [arXiv:1608.03570] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [33]B. Hoare and F.K. Seibold, Supergravity backgrounds of the η-deformed AdS 2× S 2× T 6and AdS 5× S 5superstrings, JHEP01 (2019) 125 [arXiv:1811.07841] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [34]G. Arutyunov and S. Frolov, On String S-matrix, Bound States and TBA, JHEP12 (2007) 024 [arXiv:0710.1568] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [35]G. Arutyunov and S.J. van Tongeren, AdS 5× S 5mirror model as a string σ-model, Phys. Rev. Lett.113 (2014) 261605 [arXiv:1406.2304] [INSPIRE].ADSCrossRefGoogle Scholar
- [36]G. Arutyunov and S.J. van Tongeren, Double Wick rotating Green-Schwarz strings, JHEP05 (2015) 027 [arXiv:1412.5137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [37]F. Delduc, S. Lacroix, M. Magro and B. Vicedo, On q-deformed symmetries as Poisson-Lie symmetries and application to Yang-Baxter type models, J. Phys.A 49 (2016) 415402 [arXiv:1606.01712] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [38]N. Beisert and P. Koroteev, Quantum Deformations of the One-Dimensional Hubbard Model, J. Phys.A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [39]G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality of the (AdS 5× S 5 )η superstring, Theor. Math. Phys.182 (2015) 23 [arXiv:1403.6104] [INSPIRE].
- [40]B. Hoare and A.A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS 5× S 5superstring theory, JHEP02 (2010) 094 [arXiv:0912.2958] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [41]N. Beisert, The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain, J. Phys.A 44 (2011) 265202 [arXiv:1002.1097] [INSPIRE].ADSzbMATHGoogle Scholar
- [42]B. Hoare and A.A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5× S 5superstring theory, Nucl. Phys.B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [43]B. Hoare, Towards a two-parameter q-deformation of AdS 3× S 3× M 4superstrings, Nucl. Phys.B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
- [44]C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys.104 (2014) 1095 [arXiv:1402.2105] [INSPIRE].
- [45]O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of AdSn × S nsupercoset string models, Nucl. Phys.B 891 (2015) 106 [arXiv:1411.1066] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [46]M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5× S 5superstring σ-model, Nucl. Phys.B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [47]G. Arutyunov and S. Frolov, Foundations of the AdS 5× S 5Superstring. Part I, J. Phys.A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].
- [48]M.A. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl.17 (1983) 259 [INSPIRE].zbMATHCrossRefGoogle Scholar
- [49]L. Wulff, Trivial solutions of generalized supergravity vs. non-abelian T-duality anomaly, Phys. Lett.B 781 (2018) 417 [arXiv:1803.07391] [INSPIRE].
- [50]R. Borsato and L. Wulff, Marginal deformations of WZW models and the classical Yang-Baxter equation, J. Phys.A 52 (2019) 225401 [arXiv:1812.07287] [INSPIRE].ADSMathSciNetGoogle Scholar
- [51]D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 superYang-Mills, JHEP04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSCrossRefGoogle Scholar
- [52]M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav.19 (2002) L87 [hep-th/0201081] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [53]D. Roychowdhury, On pp wave limit for η deformed superstrings, JHEP05 (2018) 018 [arXiv:1801.07680] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [54]B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdSn × S nsupercosets, JHEP06 (2014) 002 [arXiv:1403.5517] [INSPIRE].ADSCrossRefGoogle Scholar
- [55]M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdSn × S n , Int. J. Mod. Phys.A 23 (2008) 2107 [arXiv:0806.2623] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [56]A. Pacho-l and S.J. van Tongeren, Quantum deformations of the flat space superstring, Phys. Rev.D 93 (2016) 026008 [arXiv:1510.02389] [INSPIRE].ADSMathSciNetGoogle Scholar
- [57]J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of corrections to the spin-chain/string duality, Nucl. Phys.B 736 (2006) 288 [hep-th/0510171] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [58]T. Araujo, E.Ó. Colgáin and H. Yavartanoo, Embedding the modified CYBE in Supergravity, Eur. Phys. J.C 78 (2018) 854 [arXiv:1806.02602] [INSPIRE].
- [59]B. Hoare and S.J. van Tongeren, On Jordanian deformations of AdS 5and supergravity, J. Phys.A 49 (2016) 434006 [arXiv:1605.03554] [INSPIRE].zbMATHMathSciNetGoogle Scholar
- [60]S.J. van Tongeren, Unimodular Jordanian deformations of integrable superstrings, Sci Post Phys.7 (2019) 011 [arXiv:1904.08892] [INSPIRE].ADSCrossRefGoogle Scholar
- [61]I. Kawaguchi, T. Matsumoto and K. Yoshida, Jordanian deformations of the AdS 5× S 5superstring, JHEP04 (2014) 153 [arXiv:1401.4855] [INSPIRE].ADSCrossRefGoogle Scholar
- [62]D. Orlando, S. Reffert and L.I. Uruchurtu, Classical Integrability of the Squashed Three-sphere, Warped AdS 3and Schrödinger Spacetime via T-duality, J. Phys.A 44 (2011) 115401 [arXiv:1011.1771] [INSPIRE].ADSzbMATHGoogle Scholar
- [63]C. Klimčík and P. Ševera, Dual non-Abelian duality and the Drinfeld double, Phys. Lett.B 351 (1995) 455 [hep-th/9502122] [INSPIRE].
- [64]C. Klimčík, Poisson-Lie T duality, Nucl. Phys. Proc. Suppl.46 (1996) 116 [hep-th/9509095] [INSPIRE].
- [65]B. Hoare and A.A. Tseytlin, On integrable deformations of superstring σ-models related to AdSn × S nsupercosets, Nucl. Phys.B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [66]T.J. Hollowood, J.L. Miramontes and D.M. Schmidtt, An Integrable Deformation of the AdS 5× S 5Superstring, J. Phys.A 47 (2014) 495402 [arXiv:1409.1538] [INSPIRE].zbMATHMathSciNetGoogle Scholar
- [67]K. Sfetsos and D.C. Thompson, Spacetimes for λ-deformations, JHEP12 (2014) 164 [arXiv:1410.1886] [INSPIRE].ADSCrossRefGoogle Scholar
- [68]Y. Chervonyi and O. Lunin, Supergravity background of the λ-deformed AdS 3× S 3supercoset, Nucl. Phys.B 910 (2016) 685 [arXiv:1606.00394] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
- [69]G. Georgiou and K. Sfetsos, The most general λ-deformation of CFTs and integrability, JHEP03 (2019) 094 [arXiv:1812.04033] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [70]F. Delduc, B. Hoare, T. Kameyama, S. Lacroix and M. Magro, Three-parameter integrable deformation of ℤ4permutation supercosets, JHEP01 (2019) 109 [arXiv:1811.00453] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [71]M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3 , JHEP05 (2018) 085 [arXiv:1803.04423] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [72]G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS 3at k = 1, JHEP08 (2018) 204 [arXiv:1803.04420] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [73]L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric Product CFT, JHEP04 (2019) 103 [arXiv:1812.01007] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [74]L. Eberhardt and M.R. Gaberdiel, String theory on AdS 3and the symmetric orbifold of Liouville theory, arXiv:1903.00421 [INSPIRE].