Skip to main content

Dark energy without fine tuning

A preprint version of the article is available at arXiv.


We present a two-field model that realises inflation and the observed density of dark energy today, whilst solving the fine-tuning problems inherent in quintessence models. One field acts as the inflaton, generically driving the other to a saddle-point of the potential, from which it acts as a quintessence field following electroweak symmetry breaking. The model exhibits essentially no sensitivity to the initial value of the quintessence field, naturally suppresses its interactions with other fields, and automatically endows it with a small effective mass in the late Universe. The magnitude of dark energy today is fixed by the height of the saddle point in the potential, which is dictated entirely by the scale of electroweak symmetry breaking.


  1. [1]

    Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J.116 (1998) 1009 [astro-ph/9805201] [INSPIRE].

  2. [2]

    Supernova Cosmology Projectcollaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] INSPIRE].

  3. [3]

    P.J.E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys.75 (2003) 559 [astro-ph/0207347] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), Comptes Rendus Physique13 (2012) 566 [arXiv:1205.3365] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J. Solá, Cosmological constant and vacuum energy: old and new ideas, J. Phys. Conf. Ser.453 (2013) 012015 [arXiv:1306.1527] [INSPIRE].

  6. [6]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  7. [7]

    E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys.D 15 (2006) 1753 [hep-th/0603057] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys.B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    B. Ratra and P.J.E. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev.D 37 (1988) 3406 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    E.J. Copeland, A.R. Liddle and D. Wands, Exponential potentials and cosmological scaling solutions, Phys. Rev.D 57 (1998) 4686 [gr-qc/9711068] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    P.G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev.D 58 (1998) 023503 [astro-ph/9711102] [INSPIRE].

  12. [12]

    I. Zlatev, L.-M. Wang and P.J. Steinhardt, Quintessence, cosmic coincidence and the cosmological constant, Phys. Rev. Lett.82 (1999) 896 [astro-ph/9807002] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    P.J. Steinhardt, L.-M. Wang and I. Zlatev, Cosmological tracking solutions, Phys. Rev.D 59 (1999) 123504 [astro-ph/9812313] [INSPIRE].

  14. [14]

    J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett.93 (2004) 171104 [astro-ph/0309300] [INSPIRE].

  15. [15]

    J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev.D 69 (2004) 044026 [astro-ph/0309411] [INSPIRE].

  16. [16]

    P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury and A. Weltman, Detecting dark energy in orbit: the cosmological chameleon, Phys. Rev.D 70 (2004) 123518 [astro-ph/0408415] [INSPIRE].

  17. [17]

    K. Hinterbichler and J. Khoury, Symmetron fields: screening long-range forces through local symmetry restoration, Phys. Rev. Lett.104 (2010) 231301 [arXiv:1001.4525] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci.53 (2003) 77 [hep-ph/0307284] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel.9 (2006) 3 [gr-qc/0510072] [INSPIRE].

  20. [20]

    E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl and S. Schlamminger, Torsion balance experiments: a low-energy frontier of particle physics, Prog. Part. Nucl. Phys.62 (2009) 102 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    C. Burrage, E.J. Copeland and E.A. Hinds, Probing dark energy with atom interferometry, JCAP03 (2015) 042 [arXiv:1408.1409] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    D.O. Sabulsky, I. Dutta, E.A. Hinds, B. Elder, C. Burrage and E.J. Copeland, Experiment to detect dark energy forces using atom interferometry, Phys. Rev. Lett.123 (2019) 061102 [arXiv:1812.08244] [INSPIRE].

  23. [23]

    K. Dimopoulos and T. Markkanen, Dark energy as a remnant of inflation and electroweak symmetry breaking, JHEP01 (2019) 029 [arXiv:1807.04359] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  25. [25]

    C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco, CA, U.S.A. (1973) [INSPIRE].

  26. [26]

    P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev.D 47 (1993) 3546 [Erratum ibid.D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

  27. [27]

    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett.30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz.30 (1979) 719] [INSPIRE].

  28. [28]

    T. Chiba, T. Okabe and M. Yamaguchi, Kinetically driven quintessence, Phys. Rev.D 62 (2000) 023511 [astro-ph/9912463] [INSPIRE].

  29. [29]

    A. Hebecker and C. Wetterich, Quintessential adjustment of the cosmological constant, Phys. Rev. Lett.85 (2000) 3339 [hep-ph/0003287] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    A. Hebecker and C. Wetterich, Natural quintessence?, Phys. Lett.B 497 (2001) 281 [hep-ph/0008205] [INSPIRE].

  31. [31]

    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k essence, Phys. Rev.D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].

  32. [32]

    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett.85 (2000) 4438 [astro-ph/0004134] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    R.R. Caldwell and E.V. Linder, The limits of quintessence, Phys. Rev. Lett.95 (2005) 141301 [astro-ph/0505494] [INSPIRE].

  34. [34]

    R. Kallosh and A. Linde, Cosmological attractors and asymptotic freedom of the inflaton field, JCAP06 (2016) 047 [arXiv:1604.00444] [INSPIRE].

  35. [35]

    K. Dimopoulos, L. Donaldson Wood and C. Owen, Instant preheating in quintessential inflation with 𝛼-attractors, Phys. Rev.D 97 (2018) 063525 [arXiv:1712.01760] [INSPIRE].

  36. [36]

    S.-J. Wang, Electroweak relaxation of cosmological hierarchy, Phys. Rev.D 99 (2019) 023529 [arXiv:1810.06445] [INSPIRE].

  37. [37]

    P.J.E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev.D 59 (1999) 063505 [astro-ph/9810509] [INSPIRE].

  38. [38]

    T. Barreiro, E.J. Copeland and N.J. Nunes, Quintessence arising from exponential potentials, Phys. Rev.D 61 (2000) 127301 [astro-ph/9910214] [INSPIRE].

  39. [39]

    Y. Fujii, A two scalar model for a small but nonzero cosmological constant, Phys. Rev.D 62 (2000) 064004 [gr-qc/9908021] [INSPIRE].

  40. [40]

    A. Masiero, M. Pietroni and F. Rosati, SUSY QCD and quintessence, Phys. Rev.D 61 (2000) 023504 [hep-ph/9905346] [INSPIRE].

  41. [41]

    D. Blais and D. Polarski, Transient accelerated expansion and double quintessence, Phys. Rev.D 70 (2004) 084008 [astro-ph/0404043] [INSPIRE].

  42. [42]

    S.A. Kim, A.R. Liddle and S. Tsujikawa, Dynamics of assisted quintessence, Phys. Rev.D 72 (2005) 043506 [astro-ph/0506076] [INSPIRE].

  43. [43]

    E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez and V. Faraoni, Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields, Phys. Rev.D 77 (2008) 106005 [arXiv:0803.1311] [INSPIRE].

  44. [44]

    C. van de Bruck and J.M. Weller, Quintessence dynamics with two scalar fields and mixed kinetic terms, Phys. Rev.D 80 (2009) 123014 [arXiv:0910.1934] [INSPIRE].

  45. [45]

    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, Dark energy, α-attractors and large-scale structure surveys, JCAP06 (2018) 041 [arXiv:1712.09693] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M.S. Turner, Coherent scalar field oscillations in an expanding universe, Phys. Rev.D 28 (1983) 1243 [INSPIRE].

  47. [47]

    DES collaboration, First cosmology results using type Ia supernovae from the dark energy survey: constraints on cosmological parameters, Astrophys. J.872 (2019) L30 [arXiv:1811.02374] [INSPIRE].

  48. [48]

    A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept.513 (2012) 1 [arXiv:1106.2476] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    K.-I. Maeda, Towards the Einstein-Hilbert action via conformal transformation, Phys. Rev.D 39 (1989) 3159 [INSPIRE].

  51. [51]

    F. Di Marco, F. Finelli and R. Brandenberger, Adiabatic and isocurvature perturbations for multifield generalized Einstein models, Phys. Rev.D 67 (2003) 063512 [astro-ph/0211276] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information



Corresponding author

Correspondence to Tommi Markkanen.

Additional information

ArXiv ePrint: 1905.00045

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camargo-Molina, J.E., Markkanen, T. & Scott, P. Dark energy without fine tuning. J. High Energ. Phys. 2019, 44 (2019).

Download citation


  • Classical Theories of Gravity
  • Cosmology of Theories beyond the SM