Dark energy without fine tuning

  • José Eliel Camargo-Molina
  • Tommi MarkkanenEmail author
  • Pat Scott
Open Access
Regular Article - Theoretical Physics


We present a two-field model that realises inflation and the observed density of dark energy today, whilst solving the fine-tuning problems inherent in quintessence models. One field acts as the inflaton, generically driving the other to a saddle-point of the potential, from which it acts as a quintessence field following electroweak symmetry breaking. The model exhibits essentially no sensitivity to the initial value of the quintessence field, naturally suppresses its interactions with other fields, and automatically endows it with a small effective mass in the late Universe. The magnitude of dark energy today is fixed by the height of the saddle point in the potential, which is dictated entirely by the scale of electroweak symmetry breaking.


Classical Theories of Gravity Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [INSPIRE].
  2. [2]
    Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] INSPIRE].
  3. [3]
    P.J.E. Peebles and B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys. 75 (2003) 559 [astro-ph/0207347] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Solá, Cosmological constant and vacuum energy: old and new ideas, J. Phys. Conf. Ser. 453 (2013) 012015 [arXiv:1306.1527] [INSPIRE].
  6. [6]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  7. [7]
    E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].
  9. [9]
    B. Ratra and P.J.E. Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D 37 (1988) 3406 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E.J. Copeland, A.R. Liddle and D. Wands, Exponential potentials and cosmological scaling solutions, Phys. Rev. D 57 (1998) 4686 [gr-qc/9711068] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P.G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58 (1998) 023503 [astro-ph/9711102] [INSPIRE].
  12. [12]
    I. Zlatev, L.-M. Wang and P.J. Steinhardt, Quintessence, cosmic coincidence and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896 [astro-ph/9807002] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P.J. Steinhardt, L.-M. Wang and I. Zlatev, Cosmological tracking solutions, Phys. Rev. D 59 (1999) 123504 [astro-ph/9812313] [INSPIRE].
  14. [14]
    J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].
  15. [15]
    J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [INSPIRE].
  16. [16]
    P. Brax, C. van de Bruck, A.-C. Davis, J. Khoury and A. Weltman, Detecting dark energy in orbit: the cosmological chameleon, Phys. Rev. D 70 (2004) 123518 [astro-ph/0408415] [INSPIRE].
  17. [17]
    K. Hinterbichler and J. Khoury, Symmetron fields: screening long-range forces through local symmetry restoration, Phys. Rev. Lett. 104 (2010) 231301 [arXiv:1001.4525] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9 (2006) 3 [gr-qc/0510072] [INSPIRE].
  20. [20]
    E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl and S. Schlamminger, Torsion balance experiments: a low-energy frontier of particle physics, Prog. Part. Nucl. Phys. 62 (2009) 102 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Burrage, E.J. Copeland and E.A. Hinds, Probing dark energy with atom interferometry, JCAP 03 (2015) 042 [arXiv:1408.1409] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D.O. Sabulsky, I. Dutta, E.A. Hinds, B. Elder, C. Burrage and E.J. Copeland, Experiment to detect dark energy forces using atom interferometry, Phys. Rev. Lett. 123 (2019) 061102 [arXiv:1812.08244] [INSPIRE].
  23. [23]
    K. Dimopoulos and T. Markkanen, Dark energy as a remnant of inflation and electroweak symmetry breaking, JHEP 01 (2019) 029 [arXiv:1807.04359] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  25. [25]
    C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco, CA, U.S.A. (1973) [INSPIRE].
  26. [26]
    P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].
  27. [27]
    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719] [INSPIRE].
  28. [28]
    T. Chiba, T. Okabe and M. Yamaguchi, Kinetically driven quintessence, Phys. Rev. D 62 (2000) 023511 [astro-ph/9912463] [INSPIRE].
  29. [29]
    A. Hebecker and C. Wetterich, Quintessential adjustment of the cosmological constant, Phys. Rev. Lett. 85 (2000) 3339 [hep-ph/0003287] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Hebecker and C. Wetterich, Natural quintessence?, Phys. Lett. B 497 (2001) 281 [hep-ph/0008205] [INSPIRE].
  31. [31]
    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].
  32. [32]
    C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R.R. Caldwell and E.V. Linder, The limits of quintessence, Phys. Rev. Lett. 95 (2005) 141301 [astro-ph/0505494] [INSPIRE].
  34. [34]
    R. Kallosh and A. Linde, Cosmological attractors and asymptotic freedom of the inflaton field, JCAP 06 (2016) 047 [arXiv:1604.00444] [INSPIRE].
  35. [35]
    K. Dimopoulos, L. Donaldson Wood and C. Owen, Instant preheating in quintessential inflation with 𝛼-attractors, Phys. Rev. D 97 (2018) 063525 [arXiv:1712.01760] [INSPIRE].
  36. [36]
    S.-J. Wang, Electroweak relaxation of cosmological hierarchy, Phys. Rev. D 99 (2019) 023529 [arXiv:1810.06445] [INSPIRE].
  37. [37]
    P.J.E. Peebles and A. Vilenkin, Quintessential inflation, Phys. Rev. D 59 (1999) 063505 [astro-ph/9810509] [INSPIRE].
  38. [38]
    T. Barreiro, E.J. Copeland and N.J. Nunes, Quintessence arising from exponential potentials, Phys. Rev. D 61 (2000) 127301 [astro-ph/9910214] [INSPIRE].
  39. [39]
    Y. Fujii, A two scalar model for a small but nonzero cosmological constant, Phys. Rev. D 62 (2000) 064004 [gr-qc/9908021] [INSPIRE].
  40. [40]
    A. Masiero, M. Pietroni and F. Rosati, SUSY QCD and quintessence, Phys. Rev. D 61 (2000) 023504 [hep-ph/9905346] [INSPIRE].
  41. [41]
    D. Blais and D. Polarski, Transient accelerated expansion and double quintessence, Phys. Rev. D 70 (2004) 084008 [astro-ph/0404043] [INSPIRE].
  42. [42]
    S.A. Kim, A.R. Liddle and S. Tsujikawa, Dynamics of assisted quintessence, Phys. Rev. D 72 (2005) 043506 [astro-ph/0506076] [INSPIRE].
  43. [43]
    E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez and V. Faraoni, Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields, Phys. Rev. D 77 (2008) 106005 [arXiv:0803.1311] [INSPIRE].
  44. [44]
    C. van de Bruck and J.M. Weller, Quintessence dynamics with two scalar fields and mixed kinetic terms, Phys. Rev. D 80 (2009) 123014 [arXiv:0910.1934] [INSPIRE].
  45. [45]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, Dark energy, α-attractors and large-scale structure surveys, JCAP 06 (2018) 041 [arXiv:1712.09693] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.S. Turner, Coherent scalar field oscillations in an expanding universe, Phys. Rev. D 28 (1983) 1243 [INSPIRE].
  47. [47]
    DES collaboration, First cosmology results using type Ia supernovae from the dark energy survey: constraints on cosmological parameters, Astrophys. J. 872 (2019) L30 [arXiv:1811.02374] [INSPIRE].
  48. [48]
    A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
  49. [49]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    K.-I. Maeda, Towards the Einstein-Hilbert action via conformal transformation, Phys. Rev. D 39 (1989) 3159 [INSPIRE].
  51. [51]
    F. Di Marco, F. Finelli and R. Brandenberger, Adiabatic and isocurvature perturbations for multifield generalized Einstein models, Phys. Rev. D 67 (2003) 063512 [astro-ph/0211276] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsImperial College London, Blackett LaboratoryLondonU.K.
  2. 2.National Institute of Chemical Physics and BiophysicsTallinnEstonia

Personalised recommendations