Negative specific heat from non-planar interactions and small black holes in AdS/CFT

  • David BerensteinEmail author
Open Access
Regular Article - Theoretical Physics


The gravity side of the gauge/gravity duality predicts the existence of small black holes with negative specific heat. A free theory of strings has a Hagedorn behavior, but it does not lead to negative specific heat. To understand such states one needs to consider a theory of interacting strings. In the dual gauge theory, the string interactions are related to non-planar diagrams. In this paper the simplest gauged matrix model of two free matrices, that has Hagedorn behavior is analyzed in detail. A simple double trace deformation of the Hamiltonian, proportional to the square of the free Hamiltonian is studied. If the interaction has a negative sign, mimicking a gravitational attraction, one produces states with negative specific heat perturbatively and one can still compute the equation of state relating the entropy and the energy. A more general argument based on non-planar interactions that are random and that grow faster in strength than the planar diagrams as a function of the planar energy suggests that states with negative specific heat appear generically.


Black Holes Gauge-gravity correspondence Matrix Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  2. [2]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP 09 (2018) 054 [arXiv:1806.05729] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].
  7. [7]
    G.T. Horowitz and J. Polchinski, A Correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    V. Kazakov, I.K. Kostov and D. Kutasov, A Matrix model for the two-dimensional black hole, Nucl. Phys. B 622 (2002) 141 [hep-th/0101011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].
  11. [11]
    D.J. Gross and E. Witten, Possible Third Order Phase Transition in the Large N Lattice Gauge Theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].
  12. [12]
    S. Raha, Hagedorn temperature in superstring bit model and SU(N) characters, Phys. Rev. D 96 (2017) 086006 [arXiv:1706.09951] [INSPIRE].
  13. [13]
    T.L. Curtright, S. Raha and C.B. Thorn, Color Characters for White Hot String Bits, Phys. Rev. D 96 (2017) 086021 [arXiv:1708.03342] [INSPIRE].
  14. [14]
    M. Beccaria, Thermal properties of a string bit model at large N, JHEP 10 (2017) 200 [arXiv:1709.01801] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].
  18. [18]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].
  19. [19]
    D. Berenstein and S. Ramgoolam, work in progress.Google Scholar
  20. [20]
    M.M. Caldarelli, D. Klemm and P.J. Silva, Chronology protection in anti-de Sitter, Class. Quant. Grav. 22 (2005) 3461 [hep-th/0411203] [INSPIRE].
  21. [21]
    G. Milanesi and M. O'Loughlin, Singularities and closed time-like curves in type IIB 1/2 BPS geometries, JHEP 09 (2005) 008 [hep-th/0507056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  23. [23]
    M. Berkooz, A. Sever and A. Shomer, ‘Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 superYang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].
  25. [25]
    T. Harmark and M. Orselli, Spin Matrix Theory: A quantum mechanical model of the AdS/CFT correspondence, JHEP 11 (2014) 134 [arXiv:1409.4417] [INSPIRE].
  26. [26]
    T. Harmark, Interacting Giant Gravitons from Spin Matrix Theory, Phys. Rev. D 94 (2016) 066001 [arXiv:1606.06296] [INSPIRE].
  27. [27]
    C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, A New double scaling limit of N = 4 superYang-Mills theory and PP wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [INSPIRE].
  28. [28]
    N.R. Constable et al., PP wave string interactions from perturbative Yang-Mills theory, JHEP 07 (2002) 017 [hep-th/0205089] [INSPIRE].
  29. [29]
    D. Berenstein and H. Nastase, On light cone string field theory from superYang-Mills and holography, hep-th/0205048 [INSPIRE].
  30. [30]
    M. Hanada and J. Maltz, A proposal of the gauge theory description of the small Schwarzschild black hole in AdS 5 × S 5, JHEP 02 (2017) 012 [arXiv:1608.03276] [INSPIRE].
  31. [31]
    C.T. Asplund and D. Berenstein, Small AdS black holes from SYM, Phys. Lett. B 673 (2009) 264 [arXiv:0809.0712] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    R. Gregory and R. Laamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations