Advertisement

Journal of High Energy Physics

, 2018:113 | Cite as

Conservation of asymptotic charges from past to future null infinity: Maxwell fields

  • Kartik Prabhu
Open Access
Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

On any asymptotically-flat spacetime, we show that the asymptotic symmetries and charges of Maxwell fields on past null infinity can be related to those on future null infinity as recently proposed by Strominger. We extend the covariant formalism of Ashtekar and Hansen by constructing a 3-manifold of both null and spatial directions of approach to spatial infinity. This allows us to systematically impose appropriate regularity conditions on the Maxwell fields near spatial infinity along null directions. The Maxwell equations on this 3-manifold and the regularity conditions imply that the relevant field quantities on past null infinity are antipodally matched to those on future null infinity. Imposing the condition that in a scattering process the total flux of charges through spatial infinity vanishes, we isolate the subalgebra of totally fluxless symmetries near spatial infinity. This subalgebra provides a natural isomorphism between the asymptotic symmetry algebras on past and future null infinity, such that the corresponding charges are equal near spatial infinity. This proves that the flux of charges is conserved from past to future null infinity in a classical scattering process of Maxwell fields. We also comment on possible extensions of our method to scattering in general relativity.

Keywords

Classical Theories of Gravity Gauge Symmetry Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  2. [2]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  3. [3]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Penrose, Zero rest mass fields including gravitation: Asymptotic behavior, Proc. Roy. Soc. Lond. A 284 (1965) 159 [INSPIRE].
  5. [5]
    R.P. Geroch and J. Winicour, Linkages in general relativity, J. Math. Phys. 22 (1981) 803 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Ashtekar and M. Streubel, Symplectic Geometry of Radiative Modes and Conserved Quantities at Null Infinity, Proc. Roy. Soc. Lond. A 376 (1981) 585 [INSPIRE].
  7. [7]
    R.M. Wald and A. Zoupas, A general definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  8. [8]
    R. Arnowitt, S. Deser and C.W. Misner, The Dynamics of General Relativity, in Gravitation: An Introduction to Current Research, L. Witten ed., Wiley, New York, U.S.A., (1962).Google Scholar
  9. [9]
    R.P. Geroch, Structure of the gravitational field at spatial infinity, J. Math. Phys. 13 (1972) 956 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Corichi and J.D. Reyes, The gravitational Hamiltonian, first order action, Poincaré charges and surface terms, Class. Quant. Grav. 32 (2015) 195024 [arXiv:1505.01518] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    R. Beig and B.G. Schmidt, Einstein’s equations near spatial infinity, Commun. Math. Phys. 87 (1982) 65.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Ashtekar and R.O. Hansen, A unified treatment of null and spatial infinity in general relativity. I — Universal structure, asymptotic symmetries and conserved quantities at spatial infinity, J. Math. Phys. 19 (1978) 1542 [INSPIRE].
  13. [13]
    P. Sommers, The geometry of the gravitational field at spacelike infinity, J. Math. Phys. 19 (1978) 549.ADSCrossRefGoogle Scholar
  14. [14]
    A. Ashtekar, Asymptotic Structure of the Gravitational Field at Spatial Infinity, in General Relativity and Gravitation. One Hundered Years After the Birth of Albert Einstein, A. Held ed., vol. 2, pp. 37-69. Plenum Press, New York, U.S.A., (1980).Google Scholar
  15. [15]
    A. Ashtekar and J.D. Romano, Spatial infinity as a boundary of space-time, Class. Quant. Grav. 9 (1992) 1069 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Friedrich, Gravitational fields near space-like and null infinity, J. Geom. Phys. 24 (1998) 83.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Ashtekar, J. Engle and D. Sloan, Asymptotics and Hamiltonians in a First order formalism, Class. Quant. Grav. 25 (2008) 095020 [arXiv:0802.2527] [INSPIRE].
  18. [18]
    R. Geroch, Asymptotic structure of space-time, in Asymptotic structure of space-time, F.P. Esposito and L. Witten eds., Plenum Press, New York, U.S.A., (1977).Google Scholar
  19. [19]
    A. Ashtekar and A. Magnon-Ashtekar, Energy-Momentum in General Relativity, Phys. Rev. Lett. 43 (1979) 181 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Ashtekar and M. Streubel, On angular momentum of stationary gravitating systems, J. Math. Phys. 20 (1979) 1362.ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Herberthson and M. Ludvigsen, A relationship between future and past null infinity, Gen. Rel. Grav. 24 (1992) 1185 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.W. Hawking, The Information Paradox for Black Holes, 2015, arXiv:1509.01147 [INSPIRE].
  27. [27]
    R. Bousso and M. Porrati, Soft Hair as a Soft Wig, Class. Quant. Grav. 34 (2017) 204001 [arXiv:1706.00436] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton University Press, U.S.A. (1993).Google Scholar
  29. [29]
    A. Ashtekar, The BMS group, conservation laws, and soft gravitons, Talk presented at the Perimeter Institute for Theoretical Physics, 8 November 2016, http://pirsa.org/16080055/.
  30. [30]
    M. Campiglia and R. Eyheralde, Asymptotic U(1) charges at spatial infinity, JHEP 11 (2017) 168 [arXiv:1703.07884] [INSPIRE].
  31. [31]
    M. Henneaux and C. Troessaert, Asymptotic symmetries of electromagnetism at spatial infinity, JHEP 05 (2018) 137 [arXiv:1803.10194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    H. Afshar, E. Esmaeili and M.M. Sheikh-Jabbari, Asymptotic Symmetries in p-Form Theories, JHEP 05 (2018) 042 [arXiv:1801.07752] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    C. Troessaert, The BMS4 algebra at spatial infinity, Class. Quant. Grav. 35 (2018) 074003 [arXiv:1704.06223] [INSPIRE].
  34. [34]
    S. Hawking and G. Ellis, The Large scale structure of space-time, Cambridge University Press, (1973).Google Scholar
  35. [35]
    M. Herberthson, A C >1 Completion of the Kerr Space-Time at Spacelike Infinity Including I + and I , Gen. Rel. Grav. 33(2001) 1197.Google Scholar
  36. [36]
    P.G. Bergmann, ‘Gauge-Invariant’ Variables in General Relativity, Phys. Rev. 124 (1961) 274 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Ashtekar, Logarithmic ambiguities in the description of spatial infinity, Found. Phys. 15 (1985) 419.ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    P.T. Chrusciel, On the Structure of Spatial Infinity. 2. Geodesically Regular Ashtekar-hansen Structures, J. Math. Phys. 30 (1989) 2094 [INSPIRE].
  39. [39]
    R.M. Wald, General Relativity, The University of Chicago Press, U.S.A., (1984).Google Scholar
  40. [40]
    J. Harris, Algebraic Geometry: A First Course, vol. 133 of Graduate Texts in Mathematics, first edition, Springer-Verlag, New York, U.S.A., (1992).Google Scholar
  41. [41]
    M. Herberthson, On the differentiability conditions at space - like infinity, Class. Quant. Grav. 15 (1998) 3873 [gr-qc/9712058] [INSPIRE].
  42. [42]
    J. Porrill, The structure of timelike infinity for isolated systems, Proc. Roy. Soc. A 381 (1982) 323.Google Scholar
  43. [43]
    C. Cutler, Properties of spacetimes that are asymptotically flat at timelike infinity, Class. Quant. Grav. 6 (1989) 1075.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Herberthson and M. Ludvigsen, Time-like infinity and direction-dependent metrics, Class. Quant. Grav. 11 (1994) 187.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    V. Chandrasekaran, E.E. Flanagan and K. Prabhu, Symmetries and charges of general relativity at null boundaries, arXiv:1807.11499 [INSPIRE].
  46. [46]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    E.T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7 (1966) 863 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M. Henneaux and C. Troessaert, BMS Group at Spatial Infinity: the Hamiltonian (ADM) approach, JHEP 03 (2018) 147 [arXiv:1801.03718] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962) 566 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    R.P. Geroch, A. Held and R. Penrose, A space-time calculus based on pairs of null directions, J. Math. Phys. 14 (1973) 874 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, Inc., (1953).Google Scholar
  53. [53]
    F.W.J. Olver et al. eds., NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.18 of 2018-03-27.

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)Cornell UniversityIthacaU.S.A.

Personalised recommendations