Advertisement

AdS5 black strings in the stu model of FI-gauged N = 2 supergravity

  • Matteo Azzola
  • Dietmar Klemm
  • Marco Rabbiosi
Open Access
Regular Article - Theoretical Physics
  • 31 Downloads

Abstract

We analytically construct asymptotically AdS5 black string solutions starting from the four-dimensional domain wall black hole of [1]. It is shown that its uplift gives a black string in d = 5 minimal gauged supergravity, with momentum along the string. Applying instead the residual symmetries of N = 2, d = 4 Fayet-Iliopoulos-gauged super-gravity discovered in [2] to the domain wall seed leads, after uplifting, to a dyonic black string that interpolates between AdS5 and AdS3 × H2 at the horizon. A Kaluza-Klein reduction of the latter along an angular Killing direction ϕ followed by a duality transformation yields, after going back to five dimensions, a black string with both momentum along the string and rotation along ϕ. This is the first instance of using solution-generating techniques in gauged supergravity to add rotation to a given seed. These solutions all have constant scalar fields. As was shown in [3], the construction of supersymmetric static magnetic black strings in the FI-gauged stu model amounts to solving the SO(2, 1) spinning top equations, which descend from an inhomogeneous version of the Nahm equations. We are able to solve these in a particular case, which leads to a generalization of the Maldacena-Nuñez solution.

Keywords

Black Holes Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    S.L. Cacciatori, D. Klemm and M. Rabbiosi, Duality invariance in Fayet-Iliopoulos gauged supergravity, JHEP 09 (2016) 088 [arXiv:1606.05160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.L. Cacciatori, D. Klemm and W.A. Sabra, Supersymmetric domain walls and strings in D = 5 gauged supergravity coupled to vector multiplets, JHEP 03 (2003) 023 [hep-th/0302218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Elvang and P. Figueras, Black Saturn, JHEP 05 (2007) 050 [hep-th/0701035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    P. Breitenlohner and D. Maison, On nonlinear σ-models arising in (super-)gravity, Commun. Math. Phys. 209 (2000) 785 [gr-qc/9806002] [INSPIRE].
  8. [8]
    D. Klemm, M. Nozawa and M. Rabbiosi, On the integrability of Einstein-Maxwell-(A)dS gravity in the presence of Killing vectors, Class. Quant. Grav. 32 (2015) 205008 [arXiv:1506.09017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    N. Halmagyi and T. Vanel, AdS Black Holes from Duality in Gauged Supergravity, JHEP 04 (2014) 130 [arXiv:1312.5430] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    K. Hristov, Dimensional reduction of BPS attractors in AdS gauged supergravities, JHEP 12 (2014) 066 [arXiv:1409.8504] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Klemm and W.A. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities, Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-t Hooft operators and S-duality, hep-th/0612119 [INSPIRE].
  15. [15]
    A. Donos, J.P. Gauntlett and N. Kim, AdS Solutions Through Transgression, JHEP 09 (2008) 021 [arXiv:0807.4375] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Karndumri and E. Ó Colgáin, Supergravity dual of c-extremization, Phys. Rev. D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE].
  18. [18]
    A. Donos and J.P. Gauntlett, Flowing from AdS 5 to AdS 3 with T 1,1, JHEP 08 (2014) 006 [arXiv:1404.7133] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP 07 (2017) 040 [arXiv:1610.08858] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Amariti, L. Cassia and S. Penati, Surveying 4d SCFTs twisted on Riemann surfaces, JHEP 06 (2017) 056 [arXiv:1703.08201] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Günaydin, G. Sierra and P.K. Townsend, Gauging the d = 5 Maxwell/Einstein Supergravity Theories: More on Jordan Algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press (2012) [INSPIRE].
  26. [26]
    D. Klemm, N. Petri and M. Rabbiosi, Black string first order flow in N = 2, d = 5 abelian gauged supergravity, JHEP 01 (2017) 106 [arXiv:1610.07367] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Klemm and E. Zorzan, All null supersymmetric backgrounds of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, Class. Quant. Grav. 26 (2009) 145018 [arXiv:0902.4186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Bernamonti, M.M. Caldarelli, D. Klemm, R. Olea, C. Sieg and E. Zorzan, Black strings in AdS 5, JHEP 01 (2008) 061 [arXiv:0708.2402] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.P. Gauntlett and J.B. Gutowski, All supersymmetric solutions of minimal gauged supergravity in five-dimensions, Phys. Rev. D 68 (2003) 105009 [Erratum ibid. D 70 (2004) 089901] [hep-th/0304064] [INSPIRE].
  32. [32]
    W. Nahm, The algebraic geometry of multimonopoles, in proceedings of the 11th International Colloquium on Group Theoretical Methods in Physics (GROUP 11), Istanbul, Turkey, 23–28 August 1982, Lect. Notes Phys. 180 (1983) 456 [INSPIRE].
  33. [33]
    N.J. Hitchin, On the Construction of Monopoles, Commun. Math. Phys. 89 (1983) 145 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S.K. Donaldson, Instantons and geometric invariant theory, Commun. Math. Phys. 93 (1984) 453 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    N. Ercolani and A. Sinha, Monopoles and Baker Functions, Commun. Math. Phys. 125 (1989) 385 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    J. Nian, Gravity dual of two-dimensional \( \mathcal{N}={\left(2,2\right)}^{*} \) supersymmetric Yang-Mills theory and integrable models, JHEP 03 (2018) 032 [arXiv:1706.09016] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Bobev, K. Pilch and O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point, JHEP 06 (2014) 094 [arXiv:1403.7131] [INSPIRE].
  38. [38]
    M. Suh, Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions, JHEP 08 (2018) 005 [arXiv:1804.06443] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di Milano, and INFNSezione di MilanoMilanoItaly

Personalised recommendations