Advertisement

Lepton flavor violating dilepton dijet signatures from sterile neutrinos at proton colliders

  • Stefan Antusch
  • Eros Cazzato
  • Oliver Fischer
  • A. Hammad
  • Kechen Wang
Open Access
Regular Article - Theoretical Physics

Abstract

In this article we investigate the prospects of searching for sterile neutrinos in lowscale seesaw scenarios via the lepton flavour violating (but lepton number conserving) dilepton dijet signature. In our study, we focus on the final state e±μjj at the HL-LHC and the FCC-hh (or the SppC). We perform a multivariate analysis at the detector level including the dominant SM backgrounds from di-top, di-boson, and tri-boson. Under the assumption of the active-sterile neutrino mixings |VlN|2 = |θe|2 = |θμ|2 and |VτN|2 = |θτ|2 = 0, the sensitivities on the signal production cross section times branching ratio σ(ppl±N) × BR(Nljj) and on |VlN|2 for sterile neutrino mass MN between 200 and 1000 GeV are derived. For the benchmark MN = 500 GeV, when ignoring systematic uncertainties at the HL-LHC (FCC-hh/SppC) with 3 (20) ab−1 luminosity, the resulting 2-σ limits on |VlN|2 are 4.9 × 10−3 (7.0 × 10−5), while the 2-σ limit on σ × BR are 4.4 × 10−2 (1.6 × 10−2) fb, respectively. The effect of the systematic uncertainty is also studied and found to be important for sterile neutrinos with smaller masses. We also comment on searches with τ±μjj and τ±ejj final states.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].ADSGoogle Scholar
  2. [2]
    A. de Gouvêa and A. Kobach, Global Constraints on a Heavy Neutrino, Phys. Rev. D 93 (2016) 033005 [arXiv:1511.00683] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  4. [4]
    CMS collaboration, Search for heavy Majorana neutrinos in e ± e ± + jets and e ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2016) 169 [arXiv:1603.02248] [INSPIRE].
  5. [5]
    M. Agostini et al., Background-free search for neutrinoless double-β decay of 76 Ge with GERDA, arXiv:1703.00570 [INSPIRE].
  6. [6]
    M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Wyler and L. Wolfenstein, Massless Neutrinos in Left-Right Symmetric Models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].
  10. [10]
    J. Kersten and A.Yu. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  13. [13]
    F.F. Deppisch, L. Graf, J. Harz and W.-C. Huang, Neutrinoless Double Beta Decay and the Baryon Asymmetry of the Universe, Phys. Rev. D 98 (2018) 055029 [arXiv:1711.10432] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Fileviez Perez, T. Han and T. Li, Testability of Type I Seesaw at the CERN LHC: Revealing the Existence of the B-L Symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and e p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Moffat, S. Pascoli and C. Weiland, Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model, arXiv:1712.07611 [INSPIRE].
  17. [17]
    S. Antusch, E. Cazzato and O. Fischer, Heavy neutrino-antineutrino oscillations at colliders, arXiv:1709.03797 [INSPIRE].
  18. [18]
    S. Pascoli, R. Ruiz and C. Weiland, Safe Jet Vetoes, Phys. Lett. B 786 (2018) 106 [arXiv:1805.09335] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Neutrino physics at large colliders, J. Phys. Conf. Ser. 53 (2006) 506 [hep-ph/0606198] [INSPIRE].
  20. [20]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].
  21. [21]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].
  22. [22]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W. Chao, Z.-g. Si, Y.-j. Zheng and S. Zhou, Testing the Realistic Seesaw Model with Two Heavy Majorana Neutrinos at the CERN Large Hadron Collider, Phys. Lett. B 683 (2010) 26 [arXiv:0907.0935] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Das, P. Konar and S. Majhi, Production of Heavy neutrino in next-to-leading order QCD at the LHC and beyond, JHEP 06 (2016) 019 [arXiv:1604.00608] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from Wγ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C.O. Dib, C.S. Kim, K. Wang and J. Zhang, Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Phys. Rev. D 94 (2016) 013005 [arXiv:1605.01123] [INSPIRE].ADSGoogle Scholar
  30. [30]
    C.O. Dib, C.S. Kim and K. Wang, Search for Heavy Sterile Neutrinos in Trileptons at the LHC, Chin. Phys. C 41 (2017) 103103 [arXiv:1703.01936] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C.O. Dib, C.S. Kim and K. Wang, Signatures of Dirac and Majorana sterile neutrinos in trilepton events at the LHC, Phys. Rev. D 95 (2017) 115020 [arXiv:1703.01934] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Exotic μτjj events from heavy ISS neutrinos at the LHC, Phys. Lett. B 752 (2016) 46 [arXiv:1508.05074] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Tang et al., Concept for a Future Super Proton-Proton Collider, arXiv:1507.03224 [INSPIRE].
  34. [34]
    S. Antusch and O. Fischer, Testing sterile neutrino extensions of the Standard Model at future lepton colliders, JHEP 05 (2015) 053 [arXiv:1502.05915] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [INSPIRE].
  36. [36]
    S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a Neutrino Factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [INSPIRE].ADSGoogle Scholar
  37. [37]
    G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont and L. Rossi, High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report, CERN-2015-005 [INSPIRE].
  38. [38]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  39. [39]
    M.L. Mangano et al., Physics at a 100 TeV pp Collider: Standard Model Processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].
  40. [40]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  41. [41]
    I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg and L.-T. Wang, Luminosity goals for a 100-TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1544002 [arXiv:1504.06108] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV Seesaw Models from LHC Higgs Data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev. D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].ADSGoogle Scholar
  44. [44]
    R. Ruiz, M. Spannowsky and P. Waite, Heavy neutrinos from gluon fusion, Phys. Rev. D 96 (2017) 055042 [arXiv:1706.02298] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton Number Violation: Seesaw Models and Their Collider Tests, Front. Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New Production Mechanism for Heavy Neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Gluza and T. Jeliński, Heavy neutrinos and the pplljj CMS data, Phys. Lett. B 748 (2015) 125 [arXiv:1504.05568] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Anamiati, M. Hirsch and E. Nardi, Quasi-Dirac neutrinos at the LHC, JHEP 10 (2016) 010 [arXiv:1607.05641] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Das, P.S.B. Dev and R.N. Mohapatra, Same Sign versus Opposite Sign Dileptons as a Probe of Low Scale Seesaw Mechanisms, Phys. Rev. D 97 (2018) 015018 [arXiv:1709.06553] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Das, P. Konar and A. Thalapillil, Jet substructure shedding light on heavy Majorana neutrinos at the LHC, JHEP 02 (2018) 083 [arXiv:1709.09712] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Bhardwaj, A. Das, P. Konar and A. Thalapillil, Looking for Minimal Inverse Seesaw scenarios at the LHC with Jet Substructure Techniques, arXiv:1801.00797 [INSPIRE].
  52. [52]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  54. [54]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  55. [55]
    A. Hocker et al., TMVAToolkit for Multivariate Data Analysis, PoS(ACAT)040 [physics/0703039] [INSPIRE].
  56. [56]
    HiggsAnalysis-CombinedLimit online manual, https://www.gitbook.com/book/cms-hcomb/combine/details.
  57. [57]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    MEG collaboration, T. Mori, Final Results of the MEG Experiment, Nuovo Cim. C 39 (2017) 325 [arXiv:1606.08168] [INSPIRE].
  59. [59]
    S. Antusch and O. Fischer, Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities, JHEP 10 (2014) 094 [arXiv:1407.6607] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D.N. Dinh, A. Ibarra, E. Molinaro and S.T. Petcov, The μe Conversion in Nuclei, μeγ, μ → 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation, JHEP 08 (2012) 125 [Erratum ibid. 09 (2013) 023] [arXiv:1205.4671] [INSPIRE].
  61. [61]
    R. Alonso, M. Dhen, M.B. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.Institute for Nuclear PhysicsKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.DESYHamburgGermany
  4. 4.Center for Future High Energy Physics, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations