Advertisement

Susy Q and spatially modulated deformations of ABJM theory

  • Jerome P. Gauntlett
  • Christopher Rosen
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

Within a holographic framework we construct supersymmetric Q-lattice (‘Susy Q’) solutions that describe RG flows driven by supersymmetric and spatially modulated deformations of the dual CFTs. We focus on a specific D = 4 supergravity model which arises as a consistent KK truncation of D = 11 supergravity on the seven sphere that preserves SO(4) × SO(4) symmetry. The Susy Q solutions are dual to boomerang RG flows, flowing from ABJM theory in the UV, deformed by spatially modulated mass terms depending on one of the spatial directions, back to the ABJM vacuum in the far IR. For large enough deformations the boomerang flows approach the well known Poincaré invariant RG dielectric flow. The spatially averaged energy density vanishes for the Susy Q solutions.

Keywords

AdS-CFT Correspondence Supergravity Models Supersymmetry and Duality Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev. D 89 (2014) 026005 [arXiv:1308.0329] [INSPIRE].
  2. [2]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Conformal field theories in d = 4 with a helical twist, Phys. Rev. D 91 (2015) 066003 [arXiv:1412.3446] [INSPIRE].
  3. [3]
    A. Donos, J.P. Gauntlett and O. Sosa-Rodriguez, Anisotropic plasmas from axion and dilaton deformations, JHEP 11 (2016) 002 [arXiv:1608.02970] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Donos, J.P. Gauntlett, C. Rosen and O. Sosa-Rodriguez, Boomerang RG flows in M-theory with intermediate scaling, JHEP 07 (2017) 128 [arXiv:1705.03000] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Donos, J.P. Gauntlett, C. Rosen and O. Sosa-Rodriguez, Boomerang RG flows with intermediate conformal invariance, JHEP 04 (2018) 017 [arXiv:1712.08017] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Cvetič, H. Lü and C.N. Pope, Four-dimensional N = 4, SO(4) gauged supergravity from D = 11, Nucl. Phys. B 574 (2000) 761 [hep-th/9910252] [INSPIRE].
  8. [8]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  9. [9]
    C.N. Pope and N.P. Warner, A Dielectric flow solution with maximal supersymmetry, JHEP 04 (2004) 011 [hep-th/0304132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    K.K. Kim and O.-K. Kwon, Janus ABJM Models with Mass Deformation, JHEP 08 (2018) 082 [arXiv:1806.06963] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus Solutions in Four Dimensions, JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. de Wit and H. Nicolai, N = 8 Supergravity with Local SO(8) × SU(8) Invariance, Phys. Lett. B 108 (1982) 285 [INSPIRE].
  14. [14]
    A. Das, M. Fischler and M. Roček, SuperHiggs Effect in a New Class of Scalar Models and a Model of Super QED, Phys. Rev. D 16 (1977) 3427 [INSPIRE].
  15. [15]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].
  16. [16]
    M. Cvetič, H. Lü and C.N. Pope, Geometry of the embedding of supergravity scalar manifolds in D = 11 and D = 10, Nucl. Phys. B 584 (2000) 149 [hep-th/0002099] [INSPIRE].
  17. [17]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I. Bena and N.P. Warner, A Harmonic family of dielectric flow solutions with maximal supersymmetry, JHEP 12 (2004) 021 [hep-th/0406145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].
  20. [20]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [INSPIRE].
  21. [21]
    O. DeWolfe, O. Henriksson and C. Rosen, Fermi surface behavior in the ABJM M2-brane theory, Phys. Rev. D 91 (2015) 126017 [arXiv:1410.6986] [INSPIRE].
  22. [22]
    E. Kiritsis and J. Ren, On Holographic Insulators and Supersolids, JHEP 09 (2015) 168 [arXiv:1503.03481] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Azizi, H. Godazgar, M. Godazgar and C.N. Pope, Embedding of gauged STU supergravity in eleven dimensions, Phys. Rev. D 94 (2016) 066003 [arXiv:1606.06954] [INSPIRE].
  24. [24]
    D.Z. Freedman and S.S. Pufu, The holography of F -maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    U. Gran, J. Gutowski and G. Papadopoulos, Geometry of all supersymmetric four-dimensional N = 1 supergravity backgrounds, JHEP 06 (2008) 102 [arXiv:0802.1779] [INSPIRE].
  27. [27]
    A. Donos and J.P. Gauntlett, Flowing from AdS 5 to AdS 3 with T 1,1, JHEP 08 (2014) 006 [arXiv:1404.7133] [INSPIRE].
  28. [28]
    D. Freedman and A. van Proeyen, Supergravity, Cambridge University Press (2012).Google Scholar
  29. [29]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, JHEP 05 (2018) 155 [arXiv:1712.01849] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary Terms and Three-Point Functions: An AdS/CFT Puzzle Resolved, JHEP 06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Blackett Laboratory, Imperial CollegeLondonU.K.

Personalised recommendations