Advertisement

Journal of High Energy Physics

, 2017:181 | Cite as

Electroweak corrections to diphoton plus jets

  • Mauro Chiesa
  • Nicolas Greiner
  • Marek Schönherr
  • Francesco Tramontano
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate the next-to-leading order electroweak corrections to the production of a photon pair in association with zero, one and two jets at the LHC. We use GoSam and Sherpa to obtain the results in a fully automated way. For a typical set of fiducial cuts the electroweak corrections lead to a modification of the total cross section of up to 3%, depending on the jet multiplicity. We find substantial contributions in differential distributions, leading to tens of per cent corrections for phase space regions within the reach of the LHC. Furthermore we investigate the importance of photon induced processes as well as subleading contributions. Photon induced processes are found to be negligible, subleading contributions can have a sizeable impact however they can be removed by appropriate phase space cuts.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].
  4. [4]
    ATLAS collaboration, Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at \( \sqrt{s}=8 \) TeV with ATLAS, JHEP 09 (2014) 112 [arXiv:1407.4222] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of differential fiducial cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-015 (2017).
  6. [6]
    CMS collaboration, Updated measurements of Higgs boson production in the diphoton decay channel at \( \sqrt{s}=13 \) TeV in pp collisions at CMS, CMS-PAS-HIG-16-020 (2016).
  7. [7]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 13 [arXiv:1508.07819] [INSPIRE].
  8. [8]
    ATLAS collaboration, Measurement of the isolated di-photon cross-section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012003 [arXiv:1107.0581] [INSPIRE].
  9. [9]
    ATLAS collaboration, Measurement of isolated-photon pair production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 01 (2013) 086 [arXiv:1211.1913] [INSPIRE].
  10. [10]
    ATLAS collaboration, Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 112005 [arXiv:1704.03839] [INSPIRE].
  11. [11]
    CMS collaboration, Measurement of the Production Cross Section for Pairs of Isolated Photons in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2012) 133 [arXiv:1110.6461] [INSPIRE].
  12. [12]
    CMS collaboration, Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 74 (2014) 3129 [arXiv:1405.7225] [INSPIRE].
  13. [13]
    ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb −1 of data collected at \( \sqrt{s}=13 \) TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016).
  14. [14]
    ATLAS collaboration, Search for resonances in diphoton events at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 09 (2016) 001 [arXiv:1606.03833] [INSPIRE].
  15. [15]
    ATLAS collaboration, Search for nonpointing and delayed photons in the diphoton and missing transverse momentum final state in 8 TeV pp collisions at the LHC using the ATLAS detector, Phys. Rev. D 90 (2014) 112005 [arXiv:1409.5542] [INSPIRE].
  16. [16]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65 − 600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
  17. [17]
    CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].
  18. [18]
    CMS collaboration, Search for new physics in high mass diphoton events in 3.3 fb−1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 TeV and 13 TeV, CMS-PAS-EXO-16-018 (2016).
  19. [19]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  20. [20]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  21. [21]
    P. Aurenche, A. Douiri, R. Baier, M. Fontannaz and D. Schiff, Large p T Double Photon Production in Hadronic Collisions: Beyond Leading Logarithm QCD Calculation, Z. Phys. C 29 (1985) 459 [INSPIRE].ADSGoogle Scholar
  22. [22]
    B. Bailey, J.F. Owens and J. Ohnemus, An Order α s Monte Carlo calculation of hadronic double photon production, Phys. Rev. D 46 (1992) 2018 [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Binoth, J.P. Guillet, E. Pilon and M. Werlen, A full next-to-leading order study of direct photon pair production in hadronic collisions, Eur. Phys. J. C 16 (2000) 311 [hep-ph/9911340] [INSPIRE].
  24. [24]
    Z. Bern, L.J. Dixon and C. Schmidt, Isolating a light Higgs boson from the diphoton background at the CERN LHC, Phys. Rev. D 66 (2002) 074018 [hep-ph/0206194] [INSPIRE].
  25. [25]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Arnold et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. D’Errico and P. Richardson, Next-to-Leading-Order Monte Carlo Simulation of Diphoton Production in Hadronic Collisions, JHEP 02 (2012) 130 [arXiv:1106.3939] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Balázs, E.L. Berger, P.M. Nadolsky and C.P. Yuan, All-orders resummation for diphoton production at hadron colliders, Phys. Lett. B 637 (2006) 235 [hep-ph/0603037] [INSPIRE].
  30. [30]
    C. Balázs, P.M. Nadolsky, C. Schmidt and C.P. Yuan, Diphoton background to Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 489 (2000) 157 [hep-ph/9905551] [INSPIRE].
  31. [31]
    L. Cieri, F. Coradeschi and D. de Florian, Diphoton production at hadron colliders: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, JHEP 06 (2015) 185 [arXiv:1505.03162] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].
  35. [35]
    V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].
  36. [36]
    T. Gehrmann, N. Greiner and G. Heinrich, Photon isolation effects at NLO in γγ + jet final states in hadronic collisions, JHEP 06 (2013) 058 [Erratum ibid. 1406 (2014) 076] [arXiv:1303.0824] [INSPIRE].
  37. [37]
    T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the production of a photon pair in association with two jets, Phys. Rev. Lett. 111 (2013) 222002 [arXiv:1308.3660] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Badger, A. Guffanti and V. Yundin, Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the Large Hadron Collider, JHEP 03 (2014) 122 [arXiv:1312.5927] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Z. Bern et al., Next-to-leading order γγ + 2-jet production at the LHC, Phys. Rev. D 90 (2014) 054004 [arXiv:1402.4127] [INSPIRE].
  40. [40]
    G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
  42. [42]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  43. [43]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279.ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  45. [45]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  46. [46]
    G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 1211 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  49. [49]
    H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  51. [51]
    P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP 10 (2010) 105 [arXiv:1008.2441] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  58. [58]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  59. [59]
    M. Chiesa, N. Greiner and F. Tramontano, Automation of electroweak corrections for LHC processes, J. Phys. G 43 (2016) 013002 [arXiv:1507.08579] [INSPIRE].
  60. [60]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + gamma, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  62. [62]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  63. [63]
    A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  64. [64]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].
  65. [65]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  66. [66]
    S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  67. [67]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].
  68. [68]
    M. Schönherr, An automated subtraction of NLO EW infrared divergences, in preparation.Google Scholar
  69. [69]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 22ν diboson signatures at the LHC, arXiv:1705.00598 [INSPIRE].
  72. [72]
    T. Binoth et al., A Proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  73. [73]
    S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  74. [74]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
  75. [75]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
  76. [76]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
  77. [77]
    E.W.N. Glover and A.G. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [INSPIRE].
  78. [78]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  79. [79]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  80. [80]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  81. [81]
    M. Vesterinen and T.R. Wyatt, A Novel Technique for Studying the Z Boson Transverse Momentum Distribution at Hadron Colliders, Nucl. Instrum. Meth. A 602 (2009) 432 [arXiv:0807.4956] [INSPIRE].
  82. [82]
    A. Banfi, S. Redford, M. Vesterinen, P. Waller and T.R. Wyatt, Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders, Eur. Phys. J. C 71 (2011) 1600 [arXiv:1009.1580] [INSPIRE].
  83. [83]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Mauro Chiesa
    • 1
  • Nicolas Greiner
    • 2
  • Marek Schönherr
    • 2
  • Francesco Tramontano
    • 3
  1. 1.Institut für Theoretische Physik und AstrophysikJulius-Maximilians-Universität WürzburgWürzburgGermany
  2. 2.Physik InstitutUniversität ZürichZürichSwitzerland
  3. 3.Dipartimento di Fisica, Università di Napoli “Federico II” and INFN, sezione di NapoliNapoliItaly

Personalised recommendations