Journal of High Energy Physics

, 2017:162 | Cite as

Vector SIMP dark matter

  • Soo-Min Choi
  • Yonit Hochberg
  • Eric Kuflik
  • Hyun Min Lee
  • Yann Mambrini
  • Hitoshi Murayama
  • Mathias Pierre
Open Access
Regular Article - Theoretical Physics


Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.


Beyond Standard Model Cosmology of Theories beyond the SM Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    G. Arcadi et al., The Waning of the WIMP? A Review of Models, Searches and Constraints, arXiv:1703.07364 [INSPIRE].
  3. [3]
    XENON100 collaboration, E. Aprile et al., XENON100 Dark Matter Results from a Combination of 477 Live Days, Phys. Rev. D 94 (2016) 122001 [arXiv:1609.06154] [INSPIRE].
  4. [4]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  5. [5]
    PandaX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  6. [6]
    Fermi-LAT collaboration, M. Ackermann et al., Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background, JCAP 09 (2015) 008 [arXiv:1501.05464] [INSPIRE].
  7. [7]
    H.E.S.S. collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  8. [8]
    J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.T. D’Agnolo and J.T. Ruderman, Light Dark Matter from Forbidden Channels, Phys. Rev. Lett. 115 (2015) 061301 [arXiv:1505.07107] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z -portal, Phys. Lett. B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    S.-M. Choi and H.M. Lee, SIMP dark matter with gauged Z 3 symmetry, JHEP 09 (2015) 063 [arXiv:1505.00960] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016) 090 [arXiv:1512.07917] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.-M. Choi and H.M. Lee, Resonant SIMP dark matter, Phys. Lett. B 758 (2016) 47 [arXiv:1601.03566] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    S.-M. Choi, Y.-J. Kang and H.M. Lee, On thermal production of self-interacting dark matter, JHEP 12 (2016) 099 [arXiv:1610.04748] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.-M. Choi, H.M. Lee and M.-S. Seo, Cosmic abundances of SIMP dark matter, JHEP 04 (2017) 154 [arXiv:1702.07860] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett. B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Karam and K. Tamvakis, Dark Matter from a Classically Scale-Invariant SU(3)X , Phys. Rev. D 94 (2016) 055004 [arXiv:1607.01001] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye and B. Zaldivar, Production Regimes for Self-Interacting Dark Matter, JCAP 03 (2016) 018 [arXiv:1510.08063] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Heikinheimo, T. Tenkanen and K. Tuominen, WIMP miracle of the second kind, Phys. Rev. D 96 (2017) 023001 [arXiv:1704.05359] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Cline, H. Liu, T. Slatyer and W. Xue, Enabling Forbidden Dark Matter, arXiv:1702.07716 [INSPIRE].
  27. [27]
    U.K. Dey, T.N. Maity and T.S. Ray, Light Dark Matter through Assisted Annihilation, JCAP 03 (2017) 045 [arXiv:1612.09074] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Kamada, M. Yamada, T.T. Yanagida and K. Yonekura, SIMP from a strong U(1) gauge theory with a monopole condensation, Phys. Rev. D 94 (2016) 055035 [arXiv:1606.01628] [INSPIRE].
  29. [29]
    O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    I. Antoniadis, A. Boyarsky, S. Espahbodi, O. Ruchayskiy and J.D. Wells, Anomaly driven signatures of new invisible physics at the Large Hadron Collider, Nucl. Phys. B 824 (2010) 296 [arXiv:0901.0639] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    Y. Mambrini, A Clear Dark Matter gamma ray line generated by the Green-Schwarz mechanism, JCAP 12 (2009) 005 [arXiv:0907.2918] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z-prime and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].
  34. [34]
    H.M. Lee, D. Kim, K. Kong and S.C. Park, Diboson Excesses Demystified in Effective Field Theory Approach, JHEP 11 (2015) 150 [arXiv:1507.06312] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Arcadi, P. Ghosh, Y. Mambrini, M. Pierre and F.S. Queiroz, Z portal to Chern-Simons Dark Matter, arXiv:1706.04198 [INSPIRE].
  36. [36]
    G. ’t Hooft, Which Topological Features of a Gauge Theory Can Be Responsible for Permanent Confinement?, NATO Sci. Ser. B 59 (1980) 117 [INSPIRE].
  37. [37]
    E. D’Hoker and E. Farhi, Decoupling a Fermion Whose Mass Is Generated by a Yukawa Coupling: The General Case, Nucl. Phys. B 248 (1984) 59 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].
  39. [39]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  40. [40]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
  41. [41]
    M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
  43. [43]
    E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Banks and E. Rabinovici, Finite Temperature Behavior of the Lattice Abelian Higgs Model, Nucl. Phys. B 160 (1979) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Susskind, Lattice Models of Quark Confinement at High Temperature, Phys. Rev. D 20 (1979) 2610 [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    H. Georgi, Complementarity and Stability Conditions, Phys. Lett. B 771 (2017) 558 [arXiv:1607.00369] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Elastically Decoupling Dark Matter, Phys. Rev. Lett. 116 (2016) 221302 [arXiv:1512.04545] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E. Kuflik, M. Perelstein, N. R.-L. Lorier and Y.-D. Tsai, Phenomenology of ELDER Dark Matter, JHEP 08 (2017) 078 [arXiv:1706.05381] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7,8 \) and 13TeV, JHEP 02(2017) 135 [arXiv:1610.09218] [INSPIRE].
  51. [51]
    ATLAS collaboration, Search for invisible decays of a Higgs boson using vector-boson fusion in pp collisions at \( \sqrt{s} = 8 \) TeV with the ATLAS detector, JHEP 01 (2016) 172 [arXiv:1508.07869] [INSPIRE].
  52. [52]
    ATLAS collaboration, Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].
  53. [53]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
  55. [55]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].
  57. [57]
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Y. Hochberg, M. Pyle, Y. Zhao and K.M. Zurek, Detecting Superlight Dark Matter with Fermi-Degenerate Materials, JHEP 08 (2016) 057 [arXiv:1512.04533] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Y. Hochberg, Y. Kahn, M. Lisanti, C.G. Tully and K.M. Zurek, Directional detection of dark matter with two-dimensional targets, Phys. Lett. B 772 (2017) 239 [arXiv:1606.08849] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Essig, J. Mardon, O. Slone and T. Volansky, Detection of sub-GeV Dark Matter and Solar Neutrinos via Chemical-Bond Breaking, Phys. Rev. D 95 (2017) 056011 [arXiv:1608.02940] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Derenzo, R. Essig, A. Massari, A. Soto and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Scintillating Targets, Phys. Rev. D 96 (2017) 016026 [arXiv:1607.01009] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Tiffenberg et al., Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R. Essig, T. Volansky and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ALEPH, DELPHI, L3, OPAL, SLD collaborations LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  66. [66]
    BaBar collaboration, J.P. Lees et al., Search for Invisible Decays of a Dark Photon Produced in e+e Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  67. [67]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e+e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  68. [68]
    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e+e Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].
  70. [70]
    P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed Inclusive Dark Photon Search at LHCb, Phys. Rev. Lett. 116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Soo-Min Choi
    • 1
  • Yonit Hochberg
    • 2
    • 3
  • Eric Kuflik
    • 2
    • 3
  • Hyun Min Lee
    • 1
  • Yann Mambrini
    • 4
  • Hitoshi Murayama
    • 5
    • 6
    • 7
    • 8
  • Mathias Pierre
    • 4
  1. 1.Department of PhysicsChung-Ang UniversitySeoulKorea
  2. 2.Department of Physics, LEPPCornell UniversityIthacaU.S.A.
  3. 3.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael
  4. 4.Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-SudUniversité Paris-SaclayOrsayFrance
  5. 5.Ernest Orlando Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyU.S.A.
  6. 6.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  7. 7.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of Tokyo Institutes for Advanced Study, University of TokyoKashiwaJapan
  8. 8.Center for Japanese StudiesUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations