Journal of High Energy Physics

, 2017:127 | Cite as

Large gauge transformation, soft theorem, and Infrared divergence in inflationary spacetime

  • Takahiro Tanaka
  • Yuko UrakawaEmail author
Open Access
Regular Article - Theoretical Physics


It is widely known that the primordial curvature perturbation ζ has several universal properties in the infrared (IR) such as the soft theorem, which is also known as the consistency relation, and the conservation in time. They are valid in rather general single clock models of inflation. It has been argued that these universal properties are deeply related to the large gauge transformations in inflationary spacetime. However, the invariance under the large gauge transformations is not sufficient to show these IR properties. In this paper, we show that the locality condition is crucial to show the consistency relation and the conservation of ζ. This argument also can apply to an interacting system with the inflaton and heavy fields which have arbitrary integer spins, including higher spin fields, which may be motivated from string theory. We will also show that the locality condition guarantees the cancellation of the IR divergences in a certain class of variables whose correlation functions resemble cosmologically observable quantities.


Effective Field Theories Cosmology of Theories beyond the SM Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.A. Harvey, Magnetic monopoles, duality and supersymmetry, hep-th/9603086 [INSPIRE].
  2. [2]
    S.G. Avery and B.U.W. Schwab, Noether’s second theorem and Ward identities for gauge symmetries, JHEP 02 (2016) 031 [arXiv:1510.07038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, Adiabatic modes in cosmology, Phys. Rev. D 67 (2003) 123504 [astro-ph/0302326] [INSPIRE].
  4. [4]
    D. Wands, K.A. Malik, D.H. Lyth and A.R. Liddle, A New approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D 62 (2000) 043527 [astro-ph/0003278] [INSPIRE].
  5. [5]
    A.A. Starobinsky, Multicomponent de Sitter (Inflationary) Stages and the Generation of Perturbations, JETP Lett. 42 (1985) 152 [INSPIRE].ADSGoogle Scholar
  6. [6]
    D.S. Salopek and J.R. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    M. Sasaki and E.D. Stewart, A general analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001] [INSPIRE].
  8. [8]
    M. Sasaki and T. Tanaka, Superhorizon scale dynamics of multiscalar inflation, Prog. Theor. Phys. 99 (1998) 763 [gr-qc/9801017] [INSPIRE].
  9. [9]
    K.A. Malik and D. Wands, Evolution of second-order cosmological perturbations, Class. Quant. Grav. 21 (2004) L65 [astro-ph/0307055] [INSPIRE].
  10. [10]
    D.H. Lyth, K.A. Malik and M. Sasaki, A general proof of the conservation of the curvature perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].
  11. [11]
    D. Langlois and F. Vernizzi, Conserved non-linear quantities in cosmology, Phys. Rev. D 72 (2005) 103501 [astro-ph/0509078] [INSPIRE].
  12. [12]
    L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock Inflation at all loops, JHEP 09 (2013) 148 [arXiv:1210.6048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    V. Assassi, D. Baumann and D. Green, Symmetries and Loops in Inflation, JHEP 02 (2013) 151 [arXiv:1210.7792] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  15. [15]
    P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].
  16. [16]
    K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology, JCAP 01 (2014) 039 [arXiv:1304.5527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    W.D. Goldberger, L. Hui and A. Nicolis, One-particle-irreducible consistency relations for cosmological perturbations, Phys. Rev. D 87 (2013) 103520 [arXiv:1303.1193] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Berezhiani and J. Khoury, Slavnov-Taylor Identities for Primordial Perturbations, JCAP 02 (2014) 003 [arXiv:1309.4461] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    T. Tanaka and Y. Urakawa, Conservation of ζ with radiative corrections from heavy field, JCAP 06 (2016) 020 [arXiv:1510.05059] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Garriga and Y. Urakawa, Consistency relations and conservation of ζ in holographic inflation, JCAP 10 (2016) 030 [arXiv:1606.04767] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
  22. [22]
    X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Mirbabayi and M. Simonović, Effective Theory of Squeezed Correlation Functions, JCAP 03 (2016) 056 [arXiv:1507.04755] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
  30. [30]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Campoleoni, D. Francia and C. Heissenberg, On higher-spin supertranslations and superrotations, JHEP 05 (2017) 120 [arXiv:1703.01351] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared Divergences in QED, Revisited, arXiv:1705.04311 [INSPIRE].
  33. [33]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    M.H. Namjoo, H. Firouzjahi and M. Sasaki, Violation of non-Gaussianity consistency relation in a single field inflationary model, EPL 101 (2013) 39001 [arXiv:1210.3692] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X. Chen, H. Firouzjahi, M.H. Namjoo and M. Sasaki, A Single Field Inflation Model with Large Local Non-Gaussianity, EPL 102 (2013) 59001 [arXiv:1301.5699] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Berezhiani and J. Khoury, On the Initial State and Consistency Relations, JCAP 09 (2014) 018 [arXiv:1406.2689] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Dimastrogiovanni, M. Fasiello, D. Jeong and M. Kamionkowski, Inflationary tensor fossils in large-scale structure, JCAP 12 (2014) 050 [arXiv:1407.8204] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of Massive Primordial Fields on Large-Scale Structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Urakawa and T. Tanaka, IR divergence does not affect the gauge-invariant curvature perturbation, Phys. Rev. D 82 (2010) 121301 [arXiv:1007.0468] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Urakawa and T. Tanaka, Natural selection of inflationary vacuum required by infra-red regularity and gauge-invariance, Prog. Theor. Phys. 125 (2011) 1067 [arXiv:1009.2947] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    T. Tanaka and Y. Urakawa, Dominance of gauge artifact in the consistency relation for the primordial bispectrum, JCAP 05 (2011) 014 [arXiv:1103.1251] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Kundu, A. Shukla and S.P. Trivedi, Constraints from Conformal Symmetry on the Three Point Scalar Correlator in Inflation, JHEP 04 (2015) 061 [arXiv:1410.2606] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    N. Kundu, A. Shukla and S.P. Trivedi, Ward Identities for Scale and Special Conformal Transformations in Inflation, JHEP 01 (2016) 046 [arXiv:1507.06017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    T. Tanaka and Y. Urakawa, Strong restriction on inflationary vacua from the local gauge invariance II: Infrared regularity and absence of secular growth in the Euclidean vacuum, PTEP 2013 (2013) 063E02 [arXiv:1301.3088] [INSPIRE].
  45. [45]
    S. Endlich, A. Nicolis and J. Wang, Solid Inflation, JCAP 10 (2013) 011 [arXiv:1210.0569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, Solid Consistency, JCAP 03 (2017) 004 [arXiv:1701.04382] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    R.P. Feynman and F.L. Vernon Jr., The Theory of a general quantum system interacting with a linear dissipative system, Annals Phys. 24 (1963) 118 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).zbMATHGoogle Scholar
  50. [50]
    N.C. Tsamis and R.P. Woodard, The Physical basis for infrared divergences in inflationary quantum gravity, Class. Quant. Grav. 11 (1994) 2969 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    N.C. Tsamis and R.P. Woodard, The quantum gravitational back reaction on inflation, Annals Phys. 253 (1997) 1 [hep-ph/9602316] [INSPIRE].
  52. [52]
    M.S. Sloth, On the one loop corrections to inflation and the CMB anisotropies, Nucl. Phys. B 748 (2006) 149 [astro-ph/0604488] [INSPIRE].
  53. [53]
    M.S. Sloth, On the one loop corrections to inflation. II. The Consistency relation, Nucl. Phys. B 775 (2007) 78 [hep-th/0612138] [INSPIRE].
  54. [54]
    D. Seery, One-loop corrections to a scalar field during inflation, JCAP 11 (2007) 025 [arXiv:0707.3377] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Seery, One-loop corrections to the curvature perturbation from inflation, JCAP 02 (2008) 006 [arXiv:0707.3378] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Y. Urakawa and K.-i. Maeda, One-loop Corrections to Scalar and Tensor Perturbations during Inflation in Stochastic Gravity, Phys. Rev. D 78 (2008) 064004 [arXiv:0801.0126] [INSPIRE].ADSGoogle Scholar
  57. [57]
    H. Kitamoto and Y. Kitazawa, Soft Graviton effects on Gauge theories in de Sitter Space, Phys. Rev. D 87 (2013) 124004 [arXiv:1204.2876] [INSPIRE].ADSGoogle Scholar
  58. [58]
    H. Kitamoto and Y. Kitazawa, Soft gravitational effects in Kadanoff-Baym approach, JHEP 10 (2013) 145 [arXiv:1305.2029] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    T. Tanaka and Y. Urakawa, Loops in inflationary correlation functions, Class. Quant. Grav. 30 (2013) 233001 [arXiv:1306.4461] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    Y. Urakawa and T. Tanaka, Influence on Observation from IR Divergence during Inflation. I., Prog. Theor. Phys. 122 (2009) 779 [arXiv:0902.3209] [INSPIRE].
  61. [61]
    Y. Urakawa and T. Tanaka, Influence on observation from IR divergence during inflation: Multi field inflation, Prog. Theor. Phys. 122 (2010) 1207 [arXiv:0904.4415] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    Y. Urakawa, Influence of gauge artifact on adiabatic and entropy perturbations during inflation, Prog. Theor. Phys. 126 (2011) 961 [arXiv:1105.1078] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  63. [63]
    T. Tanaka and Y. Urakawa, Strong restriction on inflationary vacua from the local gauge invariance I: Local gauge invariance and infrared regularity, PTEP 2013 (2013) 083E01 [arXiv:1209.1914] [INSPIRE].
  64. [64]
    T. Tanaka and Y. Urakawa, Strong restriction on inflationary vacua from the local gauge invariance III: Infrared regularity of graviton loops, PTEP 2014 (2014) 073E01 [arXiv:1402.2076] [INSPIRE].
  65. [65]
    C.T. Byrnes, M. Gerstenlauer, A. Hebecker, S. Nurmi and G. Tasinato, Inflationary Infrared Divergences: Geometry of the Reheating Surface versus δN Formalism, JCAP 08 (2010) 006 [arXiv:1005.3307] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Gerstenlauer, A. Hebecker and G. Tasinato, Inflationary Correlation Functions without Infrared Divergences, JCAP 06 (2011) 021 [arXiv:1102.0560] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP 01 (2011) 023 [arXiv:1005.1056] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S.B. Giddings and M.S. Sloth, Cosmological observables, IR growth of fluctuations and scale-dependent anisotropies, Phys. Rev. D 84 (2011) 063528 [arXiv:1104.0002] [INSPIRE].ADSGoogle Scholar
  69. [69]
    L. Senatore and M. Zaldarriaga, On Loops in Inflation II: IR Effects in Single Clock Inflation, JHEP 01 (2013) 109 [arXiv:1203.6354] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, Tensor Squeezed Limits and the Higuchi Bound, JCAP 09 (2016) 041 [arXiv:1605.08424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    R.Z. Ferreira, M. Sandora and M.S. Sloth, Asymptotic Symmetries in de Sitter and Inflationary Spacetimes, JCAP 04 (2017) 033 [arXiv:1609.06318] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    A. Kehagias and A. Riotto, Inflation and Conformal Invariance: The Perspective from Radial Quantization, Fortsch. Phys. 65 (2017) 1700023 [arXiv:1701.05462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    R.Z. Ferreira, M. Sandora and M.S. Sloth, Patient Observers and Non-perturbative Infrared Dynamics in Inflation, arXiv:1703.10162 [INSPIRE].
  74. [74]
    J. Garriga and T. Tanaka, Can infrared gravitons screen Lambda?, Phys. Rev. D 77 (2008) 024021 [arXiv:0706.0295] [INSPIRE].ADSGoogle Scholar
  75. [75]
    P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum electrodynamics, Theor. Math. Phys. 4 (1970) 745 [INSPIRE].CrossRefzbMATHGoogle Scholar
  76. [76]
    V. Chung, Infrared Divergence in Quantum Electrodynamics, Phys. Rev. 140 (1965) B1110 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    D. Zwanziger, Reduction formulas for charged particles and coherent states in quantum electrodynamics, Phys. Rev. D 7 (1973) 1082 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversitySakyoJapan
  2. 2.Department of Physics and AstrophysicsNagoya UniversityNagoyaJapan

Personalised recommendations