Advertisement

Journal of High Energy Physics

, 2017:104 | Cite as

Linear response of entanglement entropy from holography

  • Sagar F. Lokhande
  • Gerben W. J. Oling
  • Juan F. Pedraza
Open Access
Regular Article - Theoretical Physics

Abstract

For time-independent excited states in conformal field theories, the entanglement entropy of small subsystems satisfies a ‘first law’-like relation, in which the change in entanglement is proportional to the energy within the entangling region. Such a law holds for time-dependent scenarios as long as the state is perturbatively close to the vacuum, but is not expected otherwise. In this paper we use holography to investigate the spread of entanglement entropy for unitary evolutions of special physical interest, the so-called global quenches. We model these using AdS-Vaidya geometries. We find that the first law of entanglement is replaced by a linear response relation, in which the energy density takes the role of the source and is integrated against a time-dependent kernel with compact support. For adiabatic quenches the standard first law is recovered, while for rapid quenches the linear response includes an extra term that encodes the process of thermalization. This extra term has properties that resemble a time-dependent ‘relative entropy’. We propose that this quantity serves as a useful order parameter to characterize far-from-equilibrium excited states. We illustrate our findings with concrete examples, including generic power-law and periodically driven quenches.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
  2. [2]
    J.J. Bisognano and E.H. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys. 16 (1975) 985 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].ADSGoogle Scholar
  4. [4]
    P.D. Hislop and R. Longo, Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    S.B. Giddings and A. Nudelman, Gravitational collapse and its boundary description in AdS, JHEP 02 (2002) 003 [hep-th/0112099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].ADSGoogle Scholar
  21. [21]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  23. [23]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Caceres and A. Kundu, Holographic Thermalization with Chemical Potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. Caceres, A. Kundu, J.F. Pedraza and W. Tangarife, Strong Subadditivity, Null Energy Condition and Charged Black Holes, JHEP 01 (2014) 084 [arXiv:1304.3398] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y.-Z. Li, S.-F. Wu, Y.-Q. Wang and G.-H. Yang, Linear growth of entanglement entropy in holographic thermalization captured by horizon interiors and mutual information, JHEP 09 (2013) 057 [arXiv:1306.0210] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y.-Z. Li, S.-F. Wu and G.-H. Yang, Gauss-Bonnet correction to Holographic thermalization: two-point functions, circular Wilson loops and entanglement entropy, Phys. Rev. D 88 (2013) 086006 [arXiv:1309.3764] [INSPIRE].ADSGoogle Scholar
  29. [29]
    W. Fischler, S. Kundu and J.F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, JHEP 07 (2014) 021 [arXiv:1311.5519] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014) 097 [arXiv:1312.6887] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Alishahiha, A. Faraji Astaneh and M.R. Mohammadi Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:1401.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Dynamics of gravitational collapse and holographic entropy production, Phys. Rev. D 90 (2014) 064033 [arXiv:1405.7015] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP 02 (2015) 017 [Erratum ibid. 07 (2015) 137] [arXiv:1410.6201] [INSPIRE].
  35. [35]
    E. Caceres, A. Kundu, J.F. Pedraza and D.-L. Yang, Weak Field Collapse in AdS: Introducing a Charge Density, JHEP 06 (2015) 111 [arXiv:1411.1744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.-J. Zhang, B. Wang, E. Abdalla and E. Papantonopoulos, Holographic thermalization in Gauss-Bonnet gravity with de Sitter boundary, Phys. Rev. D 91 (2015) 106010 [arXiv:1412.7073] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Gravitational collapse of thin shells: Time evolution of the holographic entanglement entropy, JHEP 06 (2015) 126 [arXiv:1502.01277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S.-J. Zhang and E. Abdalla, Holographic Thermalization in Charged Dilaton Anti-de Sitter Spacetime, Nucl. Phys. B 896 (2015) 569 [arXiv:1503.07700] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    E. Caceres, M. Sanchez and J. Virrueta, Holographic Entanglement Entropy in Time Dependent Gauss-Bonnet Gravity, JHEP 09 (2017) 127 [arXiv:1512.05666] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Camilo, B. Cuadros-Melgar and E. Abdalla, Holographic quenches towards a Lifshitz point, JHEP 02 (2016) 014 [arXiv:1511.08843] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    D. Roychowdhury, Holographic thermalization from nonrelativistic branes, Phys. Rev. D 93 (2016) 106008 [arXiv:1601.00136] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    I.Ya. Aref’eva, A.A. Golubtsova and E. Gourgoulhon, Analytic black branes in Lifshitz-like backgrounds and thermalization, JHEP 09 (2016) 142 [arXiv:1601.06046] [INSPIRE].
  43. [43]
    M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, JHEP 05 (2017) 065 [arXiv:1608.05101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Mezei, On entanglement spreading from holography, JHEP 05 (2017) 064 [arXiv:1612.00082] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    D.S. Ageev and I.Ya. Aref’eva, Memory Loss in Holographic Non-equilibrium Heating, arXiv:1704.07747 [INSPIRE].
  46. [46]
    H. Xu, Entanglement growth during Van der Waals like phase transition, Phys. Lett. B 772 (2017) 517 [arXiv:1705.02604] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    T. Ugajin, Two dimensional quantum quenches and holography, arXiv:1311.2562 [INSPIRE].
  49. [49]
    J.F. Pedraza, Evolution of nonlocal observables in an expanding boost-invariant plasma, Phys. Rev. D 90 (2014) 046010 [arXiv:1405.1724] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A.F. Astaneh and A.E. Mosaffa, Quantum Local Quench, AdS/BCFT and Yo-Yo String, JHEP 05 (2015) 107 [arXiv:1405.5469] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M. Rangamani, M. Rozali and A. Vincart-Emard, Dynamics of Holographic Entanglement Entropy Following a Local Quench, JHEP 04 (2016) 069 [arXiv:1512.03478] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of local quantum quenches, JHEP 08 (2016) 127 [arXiv:1605.05987] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Ecker, D. Grumiller, P. Stanzer, S.A. Stricker and W. van der Schee, Exploring nonlocal observables in shock wave collisions, JHEP 11 (2016) 054 [arXiv:1609.03676] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Rozali and A. Vincart-Emard, Comments on Entanglement Propagation, JHEP 06 (2017) 044 [arXiv:1702.05869] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and P. Witkowski, Time evolution of entanglement for holographic steady state formation, JHEP 10 (2017) 034 [arXiv:1705.04696] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A. Jahn and T. Takayanagi, Holographic Entanglement Entropy of Local Quenches in AdS 4 /CFT 3 : A Finite-Element Approach, arXiv:1705.04705 [INSPIRE].
  57. [57]
    M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev. A 78 (2008) 010306 [arXiv:0804.3559].ADSCrossRefGoogle Scholar
  58. [58]
    V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, arXiv:1608.00614.
  59. [59]
    H. Casini, H. Liu and M. Mezei, Spread of entanglement and causality, JHEP 07 (2016) 077 [arXiv:1509.05044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Leichenauer and M. Moosa, Entanglement Tsunami in (1+1)-Dimensions, Phys. Rev. D 92 (2015) 126004 [arXiv:1505.04225] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement Scrambling in 2d Conformal Field Theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Kundu and J.F. Pedraza, Spread of entanglement for small subsystems in holographic CFTs, Phys. Rev. D 95 (2017) 086008 [arXiv:1602.05934] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. O’Bannon, J. Probst, R. Rodgers and C.F. Uhlemann, First law of entanglement rates from holography, Phys. Rev. D 96 (2017) 066028 [arXiv:1612.07769] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M. Taylor and W. Woodhead, Renormalized entanglement entropy, JHEP 08 (2016) 165 [arXiv:1604.06808] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical Property of Entanglement Entropy for Excited States, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement Thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  68. [68]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    W.-z. Guo, S. He and J. Tao, Note on Entanglement Temperature for Low Thermal Excited States in Higher Derivative Gravity, JHEP 08 (2013) 050 [arXiv:1305.2682] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
  71. [71]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    C.A. Agón, A. Guijosa and J.F. Pedraza, Radiation and a dynamical UV/IR connection in AdS/CFT, JHEP 06 (2014) 043 [arXiv:1402.5961] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    T. Nishioka, Relevant Perturbation of Entanglement Entropy and Stationarity, Phys. Rev. D 90 (2014) 045006 [arXiv:1405.3650] [INSPIRE].ADSGoogle Scholar
  76. [76]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On Field Theory Thermalization from Gravitational Collapse, JHEP 02 (2012) 119 [arXiv:1110.5823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    D. Garfinkle and L.A. Pando Zayas, Rapid Thermalization in Field Theory from Gravitational Collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].ADSGoogle Scholar
  79. [79]
    S. Bhattacharyya and S. Minwalla, Weak Field Black Hole Formation in Asymptotically AdS Spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].ADSGoogle Scholar
  81. [81]
    L.K. Joshi, A. Mukhopadhyay, F. Preis and P. Ramadevi, Exact time-dependence of causal correlations and non-equilibrium density matrices in holographic systems, arXiv:1704.02936 [INSPIRE].
  82. [82]
    A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, On periodically driven AdS/CFT, JHEP 11 (2013) 016 [arXiv:1308.2132] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Rangamani, M. Rozali and A. Wong, Driven Holographic CFTs, JHEP 04 (2015) 093 [arXiv:1502.05726] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    P. Sabella-Garnier, Time dependence of entanglement entropy on the fuzzy sphere, JHEP 08 (2017) 121 [arXiv:1705.01969] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    S. Leichenauer, M. Moosa and M. Smolkin, Dynamics of the Area Law of Entanglement Entropy, JHEP 09 (2016) 035 [arXiv:1604.00388] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    M.J.S. Beach, J. Lee, C. Rabideau and M. Van Raamsdonk, Entanglement entropy from one-point functions in holographic states, JHEP 06 (2016) 085 [arXiv:1604.05308] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    S.F. Lokhande, G.W.J. Oling and J.F. Pedraza, Spread of entanglement in holographic non-relativistic theories, to appear.Google Scholar
  90. [90]
    K. Hashimoto, S. Kinoshita, K. Murata and T. Oka, Electric Field Quench in AdS/CFT, JHEP 09 (2014) 126 [arXiv:1407.0798] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S. Amiri-Sharifi, H.R. Sepangi and M. Ali-Akbari, Electric Field Quench, Equilibration and Universal Behavior, Phys. Rev. D 91 (2015) 126007 [arXiv:1504.03559] [INSPIRE].ADSGoogle Scholar
  92. [92]
    S. Amiri-Sharifi, M. Ali-Akbari, A. Kishani-Farahani and N. Shafie, Double Relaxation via AdS/CFT, Nucl. Phys. B 909 (2016) 778 [arXiv:1601.04281] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  93. [93]
    M. Ali-Akbari and F. Charmchi, Holographic Equilibration under External Dynamical Electric Field, arXiv:1612.09098 [INSPIRE].
  94. [94]
    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].ADSGoogle Scholar
  95. [95]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  96. [96]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations